初三數(shù)學(xué)下冊知識(shí)點(diǎn)歸納 初三數(shù)學(xué)下知識(shí)點(diǎn)歸納

2021/04/13 04:12:58文/LX

初三數(shù)學(xué)下冊知識(shí)點(diǎn)歸納初三下學(xué)期雖然已臨近中考,但是面對(duì)初三數(shù)學(xué)的學(xué)習(xí),絕對(duì)不可以掉以輕心,依舊需要加倍努力,下面是小編為大家整理的一些關(guān)于初三下數(shù)學(xué)的知識(shí)點(diǎn),請(qǐng)各位認(rèn)真閱讀,希望能幫到大家。

第二十六章 二次函數(shù)

26.1 二次函數(shù)及其圖像

二次函數(shù)(quadratic function)是指未知數(shù)的最高次數(shù)為二次的多項(xiàng)式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

一般的,自變量x和因變量y之間存在如下關(guān)系:

一般式

y=ax∧2;+bx+c(a≠0,a、b、c為常數(shù)),頂點(diǎn)坐標(biāo)為(-b/2a,-(4ac-b∧2)/4a) ;

頂點(diǎn)式

y=a(x+m)∧2+k(a≠0,a、m、k為常數(shù))或y=a(x-h)∧2+k(a≠0,a、h、k為常數(shù)),頂點(diǎn)坐標(biāo)為(-m,k)對(duì)稱軸為x=-m,頂點(diǎn)的位置特征和圖像的開口方向與函數(shù)y=ax∧2的圖像相同,有時(shí)題目會(huì)指出讓你用配方法把一般式化成頂點(diǎn)式;

交點(diǎn)式

y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線] ;

重要概念:a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下。a的絕對(duì)值還可以決定開口大小,a的絕對(duì)值越大開口就越小,a的絕對(duì)值越小開口就越大。

牛頓插值公式(已知三點(diǎn)求函數(shù)解析式)

y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引導(dǎo)出交點(diǎn)式的系數(shù)a=y1/(x1*x2) (y1為截距)

求根公式

二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

求根公式

x是自變量,y是x的二次函數(shù)

x1,x2=[-b±(√(b^2-4ac))]/2a

(即一元二次方程求根公式)(如右圖)

求根的方法還有因式分解法和配方法

在平面直角坐標(biāo)系中作出二次函數(shù)y=2x的平方的圖像,

可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。

不同的二次函數(shù)圖像

如果所畫圖形準(zhǔn)確無誤,那么二次函數(shù)將是由一般式平移得到的。

注意:草圖要有 1本身圖像,旁邊注明函數(shù)。

2畫出對(duì)稱軸,并注明X=什么

3與X軸交點(diǎn)坐標(biāo),與Y軸交點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo)。拋物線的性質(zhì)

軸對(duì)稱

1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x = -b/2a。

對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

頂點(diǎn)

2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P ( -b/2a ,4ac-b^2;)/4a )

當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2;-4ac=0時(shí),P在x軸上。

開口

3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

|a|越大,則拋物線的開口越小。

決定對(duì)稱軸位置的因素

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 因?yàn)槿魧?duì)稱軸在左邊則對(duì)稱軸小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同號(hào)

當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。因?yàn)閷?duì)稱軸在右邊則對(duì)稱軸要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要異號(hào)

可簡單記憶為左同右異,即當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab< 0 ),對(duì)稱軸在y軸右。

事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值??赏ㄟ^對(duì)二次函數(shù)求導(dǎo)得到。

決定拋物線與y軸交點(diǎn)的因素

5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

拋物線與x軸交點(diǎn)個(gè)數(shù)

6.拋物線與x軸交點(diǎn)個(gè)數(shù)

Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

_______

Δ= b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

當(dāng)a>0時(shí),函數(shù)在x= -b/2a處取得最小值f(-b/2a)=4ac-b?/4a;在{x|x<-b/2a}上是減函數(shù),在

{x|x>-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變

當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax^2+c(a≠0)

特殊值的形式

7.特殊值的形式

①當(dāng)x=1時(shí) y=a+b+c

②當(dāng)x=-1時(shí) y=a-b+c

③當(dāng)x=2時(shí) y=4a+2b+c

④當(dāng)x=-2時(shí) y=4a-2b+c

二次函數(shù)的性質(zhì)

8.定義域:R

值域:(對(duì)應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請(qǐng)讀者自行推斷)①[(4ac-b^2)/4a,

正無窮);②[t,正無窮)

奇偶性:當(dāng)b=0時(shí)為偶函數(shù),當(dāng)b≠0時(shí)為非奇非偶函數(shù)。

周期性:無

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,則拋物線開口朝上;a<0,則拋物線開口朝下;

⑶極值點(diǎn):(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,圖象與x軸交于兩點(diǎn):

([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,圖象與x軸交于一點(diǎn):

(-b/2a,0);

Δ<0,圖象與x軸無交點(diǎn);

②y=a(x-h)^2+k[頂點(diǎn)式]

此時(shí),對(duì)應(yīng)極值點(diǎn)為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交點(diǎn)式(雙根式)](a≠0)

對(duì)稱軸X=(X1+X2)/2 當(dāng)a>0 且X≧(X1+X2)/2時(shí),Y隨X的增大而增大,當(dāng)a>0且X≦(X1+X2)/2時(shí)Y隨X

的增大而減小

此時(shí),x1、x2即為函數(shù)與X軸的兩個(gè)交點(diǎn),將X、Y代入即可求出解析式(一般與一元二次方程連

用)。

交點(diǎn)式是Y=A(X-X1)(X-X2) 知道兩個(gè)x軸交點(diǎn)和另一個(gè)點(diǎn)坐標(biāo)設(shè)交點(diǎn)式。兩交點(diǎn)X值就是相應(yīng)X1 X2值。

26.2 用函數(shù)觀點(diǎn)看一元二次方程

1. 如果拋物線 與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是 ,那么當(dāng) 時(shí),函數(shù)的值是0,因此 就是方程的一個(gè)根。

2. 二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對(duì)應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。

26.3 實(shí)際問題與二次函數(shù)

在日常生活、生產(chǎn)和科研中,求使材料最省、時(shí)間最少、效率最高等問題,有些可歸結(jié)為求二次函數(shù)的最大值或最小值。

今天關(guān)于初三下數(shù)學(xué)的介紹就到這里了,如果讀者還想了解更多相關(guān)的知識(shí),請(qǐng)關(guān)注學(xué)分網(wǎng)!

THE END

最新文章

相關(guān)文章

2022北京合格考成績什么時(shí)候出 2022北京合格考成績查詢時(shí)間
2021上海嘉定區(qū)轉(zhuǎn)學(xué)政策 上海嘉定區(qū)轉(zhuǎn)學(xué)需要什么條件
2021清華附中合肥學(xué)校小升初招生簡章 清華附中合肥學(xué)校入學(xué)條件
初中語文必背基礎(chǔ)知識(shí) 初中語文必備文化常識(shí)
中學(xué)生身高標(biāo)準(zhǔn)表 中學(xué)生正常身高