過去的總結(jié)是對我們的一個寶貴財富,可以在我們遇到類似問題時起到很好的參考作用。在寫總結(jié)時,可以運用一些技巧和方法,如提問、對比、歸納等等。以下是一些總結(jié)文章的評價標準和方法,供你參考。
探索勾股定理教學設(shè)計篇一
1.課件出示問題,復習探索圖形中規(guī)律的方法:
翻板,師指名選擇正確的同學問:你為什么這么選?
生1:因為是一個正方形、一個圓、一個正方形、一個圓,所以后面也一樣是一個正方形、一個圓。
生2:因為顏色是藍黃藍黃的,所以后面也應該是藍黃的。
師:(板書:形狀、顏色)你們真棒,還觀察到了顏色的變化也是有規(guī)律的,我們一起來看看第二個禮盒里藏著什么!聰明的孩子趕快作出你的選擇。
問題2:后面的圖形是什么。
師:誰來說說你選擇的理由?
生:因為一個白一個黑,然后是一個白兩個黑,一個白三個黑,后面肯定是一個白四個黑。
師:你發(fā)現(xiàn)黑色三角的什么存在規(guī)律???
生:數(shù)量。
師:你觀察真仔細!可是第三個也是四個三角???(可以找選1的同學講給選3的同學)。
生:因為第三個都是向下的三角。
師:看來方向也不能錯。
師:剛才同學們先從整體觀察圖形,然后從形狀、顏色、數(shù)量和方向等方面找到了所給圖形的變化規(guī)律,再按照規(guī)律確定需要補充的圖形。所以大家很快就解決了魔法火車帶給我們的題目。
其實圖形還有很多很有意思的規(guī)律等著我們?nèi)ヌ綄つ?,今天我們就繼續(xù)研究“圖形的規(guī)律”(板書課題)。
設(shè)計意圖:請學生先觀察再進行選擇,來說一說理由,復習通過觀察顏色、形狀等重復出現(xiàn)的順序?qū)ふ乙?guī)律的方法。
1.小游戲,初次感知旋轉(zhuǎn):
師:魔法火車也獎勵了我們一個游戲禮盒,請同學們讀一讀游戲要求。
課件出示要求:
(1)起立,和老師一起做。
(2)邊做邊想,動作有什么特點。
(3)老師停后,同學接著做。
師:注意力特別集中的孩子肯定都明白游戲要求了,可以一邊做一邊說。
師(鏡面示范)做向上、向右、向下、向左,上、右、左、下,學生跟著做。
師不做,學生依然繼續(xù)做拍手動作。師追問:為什么老師不做了,你們還可以接著做?
生:按順序就是上右左下。(用手勢)師板書:。
2.課件直觀演示,認識“順時針旋轉(zhuǎn)“。
課件展示鐘表動態(tài)順時針旋轉(zhuǎn)圖片,師:你們看這樣旋轉(zhuǎn)的方向是不是和鐘表上時針轉(zhuǎn)動的方向一樣?那像這樣的旋轉(zhuǎn),我們給它起個名字稱作順時針旋轉(zhuǎn)。板書:順時針旋轉(zhuǎn)(畫一個箭頭)。
引導學生用手勢表示時針、分針轉(zhuǎn)動的方向。
觀察課件中風車轉(zhuǎn)動,強化對“順時針旋轉(zhuǎn)”的認識。
師:看,小風車轉(zhuǎn)起來了,快用手勢學一學它是怎么轉(zhuǎn)的?。◣ьI(lǐng)學生一邊做手勢一邊說“上右下左”)這樣的旋轉(zhuǎn)我們叫它什么?(齊答:順時針旋轉(zhuǎn))。
那如果風車從下邊開始轉(zhuǎn)?!跋伦笊嫌摇笔遣皇琼槙r針旋轉(zhuǎn)?
真棒,看來你們已經(jīng)認識順時針旋轉(zhuǎn)了。趕快在桌子上用手畫一畫,用嘴說一說順時針旋轉(zhuǎn)的方向。
意圖:增強學生對“順時針旋轉(zhuǎn)”的立體旋轉(zhuǎn)和平面旋轉(zhuǎn)的認識。
3.創(chuàng)設(shè)情境:探索圖形順時針旋轉(zhuǎn)的規(guī)律。
生:紅色部分沿順時針方向旋轉(zhuǎn)的。
生:第四個紅色部分在左邊。
師:下面的同學你們同意么。誰來具體地說說這么想的理由是什么?
——預設(shè)1學生未能說出順時針旋轉(zhuǎn)。
生:因為前三個紅色是在“上右下”所以是第四個應該在左邊。
(——預設(shè)2學生直接說出順時針上右做旋轉(zhuǎn)。
生:前三個圖形紅色部分都在“上右左”順時針旋轉(zhuǎn)的,所以按照這樣的規(guī)律轉(zhuǎn)下去,第四個風車紅色部分在左邊。
師:他說得真全面,誰能像他一樣說一說。)。
規(guī)范語言后:
(1)指名1~2回答,師:他們都已經(jīng)懂得了先觀察圖形的位置,確定旋轉(zhuǎn)的規(guī)律,再用規(guī)律找到正確的圖形真棒!請你也和你的同桌趕快說一說。
同桌互相說。
(2)指名同學上臺交流。
設(shè)計意圖:規(guī)范學生語言表達,為后續(xù)學習做好鋪墊。
3.新知遷移,自主探索并運用規(guī)律。
師:同學們老師這里也有畫好的四個圖形,請你們來用剛才學過的方法先觀察圖形的位置發(fā)現(xiàn)規(guī)律,再幫老師找到藍色部分畫在什么位置呢?快來選一選吧!
課件出示題目(調(diào)整ppt):
選項:(1)(2)(3)(4)。
生獨立思考,進行選擇。
師翻板,依據(jù)數(shù)據(jù)調(diào)整教學。
師:這么多同學選擇了第一個,誰來指著大屏幕說一說為什么。
生:應該選第一個。因為涂色部分在左上、右上、右下和坐下,是順時針旋轉(zhuǎn),所以再旋轉(zhuǎn)就到了左上。學生的小手指指著,言行一致。
你們看看這八個圖形,能用這節(jié)課學習的知識給他們分分組么?
生:四個一組。
師:為什么?
生:因為到第五個又開始重復了。
師:(課件出示四個四個一圈)無論怎樣觀察,都要找到圖形旋轉(zhuǎn)的規(guī)律再運用規(guī)律。
1.小游戲,初次感知旋轉(zhuǎn):
師:同學們,我們剛才研究的這些圖形都是按照順時針的`方向旋轉(zhuǎn)的,順時針旋轉(zhuǎn)都有什么規(guī)律呢?我們一邊做手勢一邊說一說(帶領(lǐng)學生做手勢、說方向)。
如果反過來,你們知道怎么旋轉(zhuǎn)么?(帶領(lǐng)學生做手勢“上左下右”)反過來總是按照“上左下右“的方向旋轉(zhuǎn),你們能給它起個名字么?(逆時針旋轉(zhuǎn))。
師板書,逆時針旋轉(zhuǎn)(畫一個箭頭)。
師:咱們一起用小手說說這個小風車是旋轉(zhuǎn)的方向。(課件出示風車,生邊指邊說:上左下右)快在桌子上畫一畫逆時針旋轉(zhuǎn)的圓。
2.觀察小明畫的風車,認識并探索“逆時針旋轉(zhuǎn)”規(guī)律。
(1)課件出示小明畫的前三個風車讓學生先觀察前三個風車的變化規(guī)律,再給最后一個圖形涂色。
師:聰明的同學們,小明也想求得你們的幫助,你們愿意么?
課件出示題目:
(2)生選擇,翻版,指名同學說理由。
生1:因為第一個在左,轉(zhuǎn)到了下、右是逆時針旋轉(zhuǎn),所以最后一個是右。
師:(提問選錯的同學)現(xiàn)在你認為應該選什么,能試著說一說現(xiàn)在的想法么?
3.運用規(guī)律。
107頁練一練第1題中的第(1)小題半圓的練習。
1.107頁練一練第1題中的第(2)小題有陰影的練習。
2.題目:圖形方向旋轉(zhuǎn)。
3.組合規(guī)律:
(1)課件動態(tài)展示,風車有時候也會做逆時針旋轉(zhuǎn)。那如果其中一個扇葉按逆時針旋轉(zhuǎn)涂上了顏色,那你們快觀察觀察剩余三個扇葉的旋轉(zhuǎn)呢?(也做逆時針旋轉(zhuǎn))。
師:你們真會觀察,現(xiàn)在小麗把風車的四個扇葉都涂上了顏色,趕快從四個圖形中選出正確一個吧!如果覺得有困難還可以用手勢幫助你。
課件出示題目3:
指名學生說說怎樣想。
生1:先看綠色是上左下右逆時針旋轉(zhuǎn),再看其他顏色也是逆時針旋轉(zhuǎn),因此要選4。
生2:我是看出四個顏色都是順時針旋轉(zhuǎn),因此這樣涂色。
師:你們都有了自己觀察的方法,真好!
(2)課件出示題目2(數(shù)字和顏色一起變化的規(guī)律):
生選擇,師翻版:誰來說說你的想法?
(3)形狀旋轉(zhuǎn),數(shù)字不轉(zhuǎn)(可以圖形順時針旋轉(zhuǎn)同時,把數(shù)字改為逆時針旋轉(zhuǎn)?)。
(4):形狀,數(shù)字一起轉(zhuǎn)。
學生選擇,師翻版講解。
師總結(jié):看來同學現(xiàn)在遇到涂色部分很多的圖形,都懂得整體來觀察。
師:其實生活中很多地方都存在圖形旋轉(zhuǎn)的規(guī)律。我們就可以利用圖形的旋轉(zhuǎn)創(chuàng)造美。
課件出示:拉花(每朵花的花瓣按順時針旋轉(zhuǎn))、花壇的碼放。
(設(shè)計一些形狀、數(shù)字、顏色和方向綜合旋轉(zhuǎn)的圖形排列)……。
1.出示圖形,讓學生獨立思考,用彩筆在練習紙上創(chuàng)造一組有規(guī)律的圖形。
師:那今天我們學習了圖形旋轉(zhuǎn)的規(guī)律,你們能用我們今天學習的知識和我們之前學習過有關(guān)數(shù)字、形狀、顏色的規(guī)律,把下面的圖形變的有規(guī)律而且豐富漂亮么?快動手試一試。
2.全班交流。
今天你都學到了什么?
探索勾股定理教學設(shè)計篇二
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學習的必然基礎(chǔ)。《20xx版數(shù)學課程標準》對勾股定理教學內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
2、在多種形式的數(shù)學活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節(jié)《勾股定理的應用》是北師大版八年級數(shù)學上冊第一章《勾股定理》第3節(jié)、具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題、在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;有些探究活動具有一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力。
本節(jié)課的教學目標是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
2、經(jīng)歷實際問題抽象成數(shù)學問題的過程,學會選擇適當?shù)臄?shù)學模型解決實際問題,提高學生分析問題、解決問題的能力并體會數(shù)學建模的思想。
教學重點和難點:
應用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數(shù)學模型是難點。
二、教學設(shè)想。
根據(jù)新課標提出的“要從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學生創(chuàng)設(shè)豐富的.實際問題情境,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。
在教學設(shè)計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發(fā)展。
三、教學過程分析。
本節(jié)課設(shè)計了七個環(huán)教學設(shè)計節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入。
情景1:復習提問:勾股定理的語言表述以及幾何語言表達?
設(shè)計意圖:溫習舊知識,規(guī)范語言及數(shù)學表達,體現(xiàn)數(shù)學的嚴謹性和規(guī)范性?!豆垂啥ɡ淼膽谩贰?/p>
情景2:腦筋急轉(zhuǎn)彎一個三角形的兩條邊是3和4,第三邊是多少?
設(shè)計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。
設(shè)計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議。
內(nèi)容:李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺,《勾股定理的應用》教。
你能替他想辦法完成任務嗎?
設(shè)計意圖:
第五環(huán)節(jié):方程與勾股定理。
在我國古代數(shù)學著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有《勾股定理的應用》教學設(shè)計一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦?shù)拈L度各是多少尺?《勾股定理的應用》教學設(shè)計意圖:學生可以進一步了解勾股定理的悠久歷史和廣泛應用,了解我國古代人民的聰明才智;學會運用方程的思想借助勾股定理解決實際問題。
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實際問題的方法是建立數(shù)學模型求解。
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
意圖:鼓勵學生結(jié)合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史。
探索勾股定理教學設(shè)計篇三
生:首先是任意兩邊大于第三邊。
師:任意兩邊大于第三邊?
生:任意兩邊之和大于第三邊。
生:a加上b大于c。
師:好的。a+bc,我們選擇兩條直角邊的和大于斜邊。非常好,還有沒有?
生:還有斜邊一定是大于a或者b。
生(齊):有!
師:大家都很有信心。但是,直接去找它的數(shù)量關(guān)系是不是感到有些困難,無從入手?我給大家一些提示,嘗試學習一下古人用面積法來探究直角三角形三邊的數(shù)量關(guān)系。
請同學們在方格紙上三角形abc外,畫一個以ac為一邊的正方形,畫一個以bc為邊的正方形;再求出這兩個正方形的面積。(如圖1--1)。
(一名學生上黑板畫圖,教師巡視、指導。)學生畫好后。
師:怎樣畫以ab為邊的正方形呢?(學生思考,部分學生竊竊私語)。
師:哪位同學愿意上來畫?(少數(shù)同學欲舉手,但還猶豫)。
師:請李斯婷上黑板畫一下;。
教師巡視中發(fā)現(xiàn):許多同學畫“以ab為邊的正方形”時,正方形的另外兩個頂點不是格點,使求面積發(fā)生困難。
師:請同學們思考:以ab為邊的正方形的另兩個頂點是不是格點?為什么?
學生遇到困難,教師及時點拔、指導,這是學生自主學習過程中不可忽缺的,也是學生自主探究活動取得實效,教師應做的工作。)。
師:請同學們思考:怎樣求出圖1-2中,以ab為一邊的正方形的面積?(由于不知道邊長,學生“冷場”)。
師:假設(shè)每格的長為1,請每組前后兩桌四位同學為一小組討論,然后我們一起交流!(課堂氣氛活躍、熱烈起來。約一分鐘后有學生舉手,教師和他進行了個別交流,隨后舉手的同學又有一些。)。
師:請同學們來交流思路與方法。
生(阮穎旋):我用割補法。
師:請把你的方法用圖展示一下。
阮穎旋走上講臺,教師用展示平臺投影出該生的示意圖(如圖3)。
生(劉世航):我用補形法,在正方形各邊上補一個直角三角形在形外,變成一個大的正方形。
師:請把你的方法用圖展示一下。
生(劉世航):走上講臺,教師用展示平臺投影出該生的示意圖(如圖4)。
生(劉世航):等于25。
師:圖2--2中,以pq為一邊的正方形的面積等于多少?
生:等于4××4×2+22=20。
師:圖2--2中,三個正方形的面積有什么關(guān)系?
二、定理探索。
師:請同學們在圖5中,考察各直角三角形周圍的三個正方形的面積之間的關(guān)系。(學生獨立操作,教師巡視。)。
生(李梅):大正方形減小正方形等于第三個正方形。
生(潔婷):兩個小正方形相加等于大正方形。
生(炯輝):兩個小正方形面積相加等于大正方形面積。
……。
生(李梅):兩邊平方和等于第三邊的平方。
生(潔婷):兩直角邊的平方和等于斜邊的平方。
師:你真棒!這就是在數(shù)學史上具有里程碑意義、非常著名的勾股定理(板書課題),即:直角三角形中,兩直角邊的平方和等于斜邊的平方。(投影)但這僅僅是在幾個直角三角形(有具體數(shù)值)中發(fā)現(xiàn)的,在任意一個直角三角形(斜邊為c、兩直角邊為a、b)中是否仍成立(a2+b2=c2)呢?(投影)。
師:請同學們用課前準備好的四個全等的直角三角形在桌面上拼圖,圍成一個正方形可以嗎?(教師巡視)。
師:比一比,誰的圖形漂亮?(教師繼續(xù)巡視)。
師:誰愿把自己拼(圍)得到的優(yōu)美圖案與大家共享?(同學們紛紛舉手。)。
師:同學們自由上臺展示(可一起上臺)。
教師拿出課前準備的“雙面膠”供學生在黑板上粘貼。
生(潘思婷):面積為c2+2ab。
師:介紹一下算法。
生(潘思婷):中間小正方形的面積為c2,再加四個直角三角形的面積就行了。
師:還有什么不同方法呢?
生(宋彬賢):大正方形的邊長就是a+b,所以大正方形的面積就等于(a+b)2。
生(潘思婷):c2+2ab=(a+b)2。
師:能簡化嗎?
生(潘思婷):能,結(jié)果是c2=a2+b2。
生(齊):哇!就是勾股定理哎。學生的臉上流露出欣喜、愉悅的表情。這就是成就感!是教師課堂教學的最大成功。
師:剛才我們通過圖6的面積計算,驗證了勾股定理;能否在圖7中,通過面積計算,驗證勾股定理?圖7中,大正方形的面積=c2或4(ab)+(a-b)2.步驟類似于圖6中的驗證過程。
師:至此,我們已用兩種方法證明了勾股定理,從勾股定理的發(fā)現(xiàn)到今,已有了400多種證明方法,同學們課后有興趣可查閱有關(guān)資料。
三、小結(jié)。
師:什么樣的三角形適合用勾股定理?如何用代數(shù)式表示勾股定理?你能用一種方法證明勾股定理?(鄭曉珊、蘇俊輝在黑板做)。
生:(齊)點評。
(布置作業(yè):書后69頁第1,2,3題)。
(鈴響,圓滿完成教學任務)師生下課。
探索勾股定理教學設(shè)計篇四
勾股定理是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
以自學輔導為主,充分發(fā)揮教師的`主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設(shè)計如下:
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
引導學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
探索勾股定理教學設(shè)計篇五
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學習的必然基礎(chǔ)?!?0xx版數(shù)學課程標準》對勾股定理教學內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
2、在多種形式的數(shù)學活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節(jié)課的教學目標是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
教學重點和難點:
應用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數(shù)學模型是難點。
根據(jù)新課標提出的“要從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學生創(chuàng)設(shè)豐富的實際問題情境,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。
在教學設(shè)計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發(fā)展。
第一環(huán)節(jié):情境引入。
情景1:復習提問:勾股定理的語言表述以及幾何語言表達?
設(shè)計意圖:溫習舊知識,規(guī)范語言及數(shù)學表達,體現(xiàn)。
設(shè)計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。
設(shè)計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議。
設(shè)計意圖:
第五環(huán)節(jié):方程與勾股定理。
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實際問題的方法是建立數(shù)學模型求解、
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題、
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
意圖:鼓勵學生結(jié)合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史、《勾股定理的應用》教學設(shè)計第七環(huán)作業(yè)設(shè)計:
第一道題難度較小,大部分學生可以獨立完成,第二道題有較大難度,可以交流討論完成。
探索勾股定理教學設(shè)計篇六
3、探求給定的事物中隱含的規(guī)律或變化趨勢。
1、經(jīng)歷探索數(shù)與數(shù)之間、圖形與圖形之間的規(guī)律,驗證規(guī)律的過程。
2、培養(yǎng)學生分析問題、解決問題的能力。
1、培養(yǎng)學生合作意識。
2、使學生在探索規(guī)律的過程中體會與日常生活的聯(lián)系,獲得成功體驗。
3、能用語言和其它方式把事物中的規(guī)律表示出來。
1、探索、猜想、歸納、驗證等能力的培養(yǎng)。
2、發(fā)現(xiàn)數(shù)學規(guī)律。
多媒體。
一、激趣引入:一年之內(nèi)1對家鴿可以繁殖成多少對?
二、新課探索:
1、填表。
師:(投影展示未完成的乘法表)這張乘法表中有好多的空白,你們能把它補充完整嗎?
(生親自填乘法表,為發(fā)現(xiàn)其中的規(guī)律做準備)。
1)師:現(xiàn)在我們已經(jīng)填好了一張完整的乘法表,我們一起對照表,找一找數(shù)字之間有哪些規(guī)律?(展示完整的表)你們可以小組之間互相交流。
(教師巡視參與討論)。
2)交流發(fā)現(xiàn)。
師:現(xiàn)在我們就一起來交流我們發(fā)現(xiàn)的規(guī)律,告訴教師你們都發(fā)現(xiàn)了哪些規(guī)律?
生:從1這個表格出發(fā),得到的數(shù)字都是一樣的。
師:這是什么規(guī)律呢?
生:1和任何相乘都等于它本身。
師:還有什么規(guī)律呢?
(生各抒已見)。
3、找規(guī)律,填一填。
1)8111417()23()。
2)491625()4964。
3)1827()125(),
4)3691524()63()。
(學生思考其中的規(guī)律,抽生回答,并說明原因)。
學生認真思考,找出其中的規(guī)律,并嘗試用字母表示出來。
5、為了迎接“六一”的到來,我班準備按如下的方式為教室掛上氣球。
(抽生回答問題,并說明理由)。
(抽生回答問題,并說明理由)。
7、學生討論生活中還有哪些有規(guī)律的事情?(激發(fā)學生的學習興趣,體會的美)。
8、解決引題問題。
三、本節(jié)小結(jié)。
今天老師和大家一起探索了許多有趣的規(guī)律,同時也運用發(fā)現(xiàn)的規(guī)律解決了生活中的許多問題,在我們的樂園里還有許多更有趣的知識等待我們大家去繼續(xù)探索,希望大家做有心人,永攀高峰。
探索勾股定理教學設(shè)計篇七
1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。
2、會利用勾股定理解釋生活中的簡單現(xiàn)象。
(二)能力訓練要求。
1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。
2、在探索勾股定理的過程中,發(fā)展學生歸納、概括和有條理地表達活動過程及結(jié)論的能力。
(三)情感與價值觀要求。
1、培養(yǎng)學生積極參與、合作交流的意識。
2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的勇氣。
二、教學重、難點。
難點:在方格紙上通過計算面積的方法探索勾股定理。
三、教學方法。
交流探索猜想。
在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關(guān)系。
四、教具準備。
1、學生每人課前準備若干張方格紙。
2、投影片三張:
第一張:填空(記作1、1、1a);
第二張:問題串(記作1、1、1b);
第三張:做一做(記作1、1、1c)。
探索勾股定理教學設(shè)計篇八
通過本節(jié)內(nèi)容的學習,使學生親身經(jīng)歷和體驗,感受發(fā)現(xiàn)規(guī)律的樂趣,同時體會計算器的工具性作用。
五年級學生已經(jīng)基本掌握計算器的使用方法,但是還并不完全認識計算器在學習、生活中的工具性作用,所以教學中還要讓學生進一步加深認識;在數(shù)學計算過程中,學生已有一定的通過計算結(jié)果尋找計算規(guī)律的經(jīng)驗,通過進一步探討,體會發(fā)現(xiàn)規(guī)律是學習捷徑,感受其中的樂趣。
1、能借助計算器探求簡單的數(shù)學規(guī)律。
2、培養(yǎng)學生觀察、歸納、概括、推理的數(shù)學能力。
3、讓學生感受到計算器給學習與生活帶來的便捷。
重點:
1、能讓學生發(fā)現(xiàn)簡單的數(shù)學規(guī)律。
2、培養(yǎng)學生合作交流的學習方法。
難點:
幫助學生培養(yǎng)觀察、推理的數(shù)學能力。
一、激發(fā)學生興趣。
1、小組合作。
巡視,指導學生討論。
2、小組討論,匯報。
二、自主探索。
出示例題10,讓學生觀察等式的變化,發(fā)現(xiàn)規(guī)律。
1、觀察,發(fā)現(xiàn)。
2、知識遷移。
不用計算,用發(fā)現(xiàn)的規(guī)律直接寫出后幾題的商。
學生能應用所發(fā)現(xiàn)的規(guī)律填出后幾題的商。
敘述發(fā)現(xiàn)的規(guī)律。
設(shè)計意圖【發(fā)揮學生的觀察、發(fā)現(xiàn)的自主能動性】。
3、小結(jié)。
三、知識拓展。
1、練習。
出示題目:先找規(guī)律,再按規(guī)律填數(shù)。
6×7=42。
6.6×6.7=44.22。
6.66×66.7=444.222。
6.6666×6666.7=。
6.66666×66666.7=。
2、觀察式子所呈現(xiàn)的特征。
設(shè)計意圖【培養(yǎng)學生知識遷移能力、應用能力】。
四、指導學生總結(jié)。
設(shè)計意圖【培養(yǎng)學生歸納、概括、推理能力。因為計算器顯示的數(shù)位有限?!俊?/p>
五、作業(yè)。
1÷0.1=1×10。
3×100=3÷。
設(shè)計意圖【感受數(shù)學美?!?。
板書設(shè)計。
探索勾股定理教學設(shè)計篇九
(2)了解互逆命題、互逆定理.
2.目標解析。
目標(2)能根據(jù)原命題寫出它的逆命題,并了解原命題為真命題時,逆命題不一定為真命題.
三、教學問題診斷分析。
勾股定理的逆定理的證明是先作一個合適的直角三角形,再證明有已知條件的三角形和直角三角形全等等,這種證法學生不容易想到,難以理解,在教學時應該注意啟發(fā)引導.
本課的教學難點是證明勾股定理的逆定理.
1.創(chuàng)設(shè)問題情境。
師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設(shè)和結(jié)論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關(guān)系.
追問1:你能把勾股定理的題設(shè)與結(jié)論交換得到一個新的命題嗎?
師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題.
追問2:“如果三角形三邊長、b、c滿足,那么這個三角形是直角三角形.”能否把它作為判定直角三角形的依據(jù)呢?本節(jié)課我們一起來研究這個問題.
探索勾股定理教學設(shè)計篇十
教材所處的地位與作用。
“探索勾股定理”是人教版八年級《數(shù)學》下冊內(nèi)容。“勾股定理”是安排在學生學習了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。
二、教學目標。
綜上分析及教學大綱要求,本課時教學目標制定如下:
1、知識目標。
知道勾股定理的由來,初步理解割補拼接的面積證法。
掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
2、能力目標。
在探索勾股定理的過程中,讓學生經(jīng)歷“觀察——合理猜想——歸納——驗證”的數(shù)學思想,并體會數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學探究問題的能力。
3、情感目標。
通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數(shù)學知識的發(fā)生、發(fā)展過程。
介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數(shù)學激情及愛國情感。
三、教學重難點。
本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學生構(gòu)造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。
四、教學問題診斷。
本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學結(jié)論的數(shù)形結(jié)合思想,對于學生來說,有些陌生,難以理解,又加之數(shù)學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學法上都進行了改進。
五、教法與學法分析。
[教學方法與手段]針對八年級學生的知識結(jié)構(gòu)和心理特征,本節(jié)課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。
[學法分析]在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟?qū)W習方法,借此培養(yǎng)學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。
1、創(chuàng)設(shè)情境,引入新課。
本節(jié)課開始利用多媒體介紹了在北京召開的國際數(shù)學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)?!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學生思維的閘門,激勵探究,使學生的學習狀態(tài)由被動變?yōu)橹鲃?,在輕松愉悅的氛圍中學到知識。
2、觀察發(fā)現(xiàn),類比猜想。
讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關(guān)系”的結(jié)論?同學們很輕易的得到了結(jié)論。最后對此結(jié)論通過在網(wǎng)格中數(shù)格子進行驗證,讓學生經(jīng)歷了“觀察——合理猜測——歸納——驗證”的這一數(shù)學思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學們的.討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經(jīng)過割補變?yōu)橐?guī)則。
3、實驗探究,證明結(jié)論。
因為勾股定理的出現(xiàn),使數(shù)學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數(shù)形結(jié)合這一數(shù)學思想,讓學生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。
4、練兵之際。
這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數(shù)學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。
5、自己動手,拼出弦圖。
讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學生,讓他們在數(shù)學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。
6、總結(jié)反思。
通過這一堂課,我認為數(shù)學教學的核心不是知識本身,而是數(shù)學的思維方式,而培養(yǎng)這種數(shù)學思維方式需要豐富的數(shù)學活動。在活動中學生可以用自己創(chuàng)造與體驗的方法來學習數(shù)學,這樣才能真正的掌握數(shù)學,真正擁有數(shù)學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉(zhuǎn)為了學生動腦、動手、自主研究,小組學習討論交流為主,把數(shù)學課堂轉(zhuǎn)化為“數(shù)學實驗室”,學生通過自己活動得出結(jié)論,使創(chuàng)新精神與實踐能力得到了發(fā)展。
七、設(shè)計說明。
1、根據(jù)學生的知識結(jié)構(gòu),我采用的數(shù)學流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結(jié)論——自己動手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學生經(jīng)歷了觀察——猜想——歸納——驗證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數(shù)學思想對直角三角形三邊關(guān)系進行了研究,并得出了結(jié)論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質(zhì)的形成有重要作用,對學生終身發(fā)展也有很大作用。
探索勾股定理教學設(shè)計篇十一
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學習的必然基礎(chǔ)?!?0xx版數(shù)學課程標準》對勾股定理教學內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
2、在多種形式的數(shù)學活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節(jié)課的教學目標是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
教學重點和難點:
應用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數(shù)學模型是難點。
根據(jù)新課標提出的“要從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學生創(chuàng)設(shè)豐富的實際問題情境,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。
在教學設(shè)計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發(fā)展。
第一環(huán)節(jié):情境引入。
情景1:復習提問:勾股定理的語言表述以及幾何語言表達?
設(shè)計意圖:溫習舊知識,規(guī)范語言及數(shù)學表達,體現(xiàn)。
設(shè)計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。
設(shè)計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議。
設(shè)計意圖:
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實際問題的方法是建立數(shù)學模型求解、
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計:
第一道題難度較小,大部分學生可以獨立完成,第二道題有較大難度,可以交流討論完成。
知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程、
數(shù)學思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想、解決問題:
1、通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維、
2、在探究活動中,學會與人合作并能與他人交流思維的過程和探究結(jié)果、
情感態(tài)度:
1、通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習熱情、
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生的合作交流意識和探索精神、
2、難點是用拼圖的方法證明勾股定理、
探索勾股定理教學設(shè)計篇十二
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的“形”的特點,轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設(shè)計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學生的學習興趣。
設(shè)計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
二、教案運行描述:
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
三、教學流程:
(一)引入。
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。
(二)實驗探究。
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)。
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
(三)探索所得結(jié)論的正確性。
當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)。
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為“畢達哥拉斯定理”。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2―1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學家商高就曾用“勾三、股四、弦五”測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為“勾股定理”。(點題)。
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
如圖4(構(gòu)造新圖形的方法去探索)。
四、總結(jié):
本節(jié)課學習的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
探索勾股定理教學設(shè)計篇十三
1、知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2、過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3、情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關(guān)勾股定理的歷史講解,對學生進行德育。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
談一談你這節(jié)課都有哪些收獲?
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的'有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
探索勾股定理教學設(shè)計篇十四
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設(shè)計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學生的學習興趣。
設(shè)計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的`民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入。
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。
(二)實驗探究。
1、取方格紙片,在上面先設(shè)計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)。
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
(三)探索所得結(jié)論的正確性。
當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)。
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為"勾股定理"。
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。
本節(jié)課學習的勾股定理用語言敘說為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
探索勾股定理教學設(shè)計篇十五
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
2.通過勾股定理與它的逆定理的學習,加深了學生對性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認識。
3.完善了知識結(jié)構(gòu),為后繼學習打下基礎(chǔ)。
初中生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自已的觀點,能在傾聽別人意見的過程中逐漸完善自已的想法,而且本班學生比較上進,思維活躍,愿意表達自已的見解,有一定的互動互助基礎(chǔ)。
1.知識與技能:
(2)掌握勾股定理的逆定理,并能應用勾股定理的逆定理判定一個三角形是不是直角三角形。
2.過程與方法。
(1)通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成過程。
(2)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應用。
(3)通過對勾股定理的逆定理的證明,體會數(shù)形結(jié)合方法在問題解決中的作用,并能應用勾股定理的逆定理來解決相關(guān)問題。
3.情感態(tài)度。
(2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
探索勾股定理教學設(shè)計篇十六
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的“形”的特點,轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設(shè)計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學生的學習興趣。
設(shè)計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的自豪感和探究創(chuàng)新的精神。
教學目標:
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的'文化價值。
3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
(二)實驗探究
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)
(三)探索所得結(jié)論的正確性
當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為“畢達哥拉斯定理”。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2―1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前20xx年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學家商高就曾用“勾三、股四、弦五”測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為“勾股定理”。(點題)
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
本節(jié)課學習的勾股定理用語言敘說為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
探索勾股定理教學設(shè)計篇十七
一是讓學生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識和方法)。
二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數(shù)學素養(yǎng),適時對大家進行思想教育。
通過本節(jié)課的教學,讓我更深刻地認識到:
3.要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標,而且也一定能讓學生“考出”好的成績。
探索勾股定理教學設(shè)計篇十八
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關(guān)勾股定理的歷史講解,對學生進行德育教育。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標系。求點f和點e坐標。
6、邊長為8和4的矩形oabc的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設(shè)b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標,(3)ab1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系。
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。
二、課堂小結(jié)。
談一談你這節(jié)課都有哪些收獲?
三、課堂練習以上習題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復習引入。
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結(jié)數(shù)學思想方法。
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結(jié)果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調(diào)。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。
二、鞏固練習,熟練新知。
通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。
在教學設(shè)計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設(shè)計中轉(zhuǎn)接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。
探索勾股定理教學設(shè)計篇十九
教學目標具體要求:
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關(guān)勾股定理的歷史講解,對學生進行德育教育。
重點:
難點:
教案設(shè)計。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
二、課堂小結(jié)。
談一談你這節(jié)課都有哪些收獲?
三、課堂練習以上習題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
【本文地址:http://www.aiweibaby.com/zuowen/16574190.html】