教案是教師為指導(dǎo)學(xué)生學(xué)習(xí)而精心設(shè)計(jì)的一份教學(xué)計(jì)劃,它可以幫助教師合理安排教學(xué)內(nèi)容和教學(xué)活動(dòng),以達(dá)到預(yù)期的教學(xué)效果。一份好的教案應(yīng)該清晰明確,內(nèi)容充實(shí),方法靈活?,F(xiàn)在我們需要準(zhǔn)備一份教案了吧?教案的編寫要注意資源的合理利用和教學(xué)環(huán)境的創(chuàng)設(shè)。如果你想了解更多優(yōu)秀的教案,以下是一些值得推薦的教學(xué)資源。
定理與證明教案篇一
1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.
2、通過(guò)實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.
一、學(xué)前準(zhǔn)備:
1、閱讀課本第46頁(yè)到第47頁(yè),完成下列問(wèn)題:。
2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說(shuō)明勾股定理是正確的方法(請(qǐng)逐一說(shuō)明)。
二、合作探究:
(一)自學(xué)、相信自己:
(二)思索、交流:
(三)應(yīng)用、探究:
(四)鞏固練習(xí):
1、如圖,64、400分別為所在正方形的面積,則圖中字。
母a所代表的正方形面積是_________。
三.學(xué)習(xí)體會(huì):
本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問(wèn)題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來(lái)解決。
2②圖。
四.自我測(cè)試:
五.自我提高:
定理與證明教案篇二
各位老師大家好!
今天我說(shuō)課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時(shí),今天我將就第1課時(shí)的余弦定理的證明與簡(jiǎn)單應(yīng)用進(jìn)行說(shuō)課。下面我分別從教材分析。教學(xué)目標(biāo)的確定。教學(xué)方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)這四個(gè)方面來(lái)闡述我對(duì)這節(jié)課的教學(xué)設(shè)想。
一、教材分析。
本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過(guò)了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過(guò)渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來(lái),實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問(wèn)題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。
在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。
二、教學(xué)目標(biāo)的確定。
基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:
三、教學(xué)方法的選擇。
基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問(wèn)題出發(fā),發(fā)現(xiàn)無(wú)法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問(wèn)題,最終形成概念,獲得方法,培養(yǎng)能力。
在教學(xué)中利用計(jì)算機(jī)多媒體來(lái)輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。
四、教學(xué)過(guò)程的設(shè)計(jì)。
為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過(guò)程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過(guò)程如下:
1、創(chuàng)設(shè)情境,引入課題。
利用多媒體引出如下問(wèn)題:
a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。
【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過(guò)正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無(wú)法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。
2、探索研究、構(gòu)建新知。
(1)由于初中接觸的是解直角三角形的問(wèn)題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。
(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。
通過(guò)解決問(wèn)題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。
在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類比向量法證明正弦定理的過(guò)程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來(lái)表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。
根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問(wèn)題:
(1)已知三邊,求三個(gè)角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。
3、例題講解、鞏固練習(xí)。
本階段的教學(xué)主要是通過(guò)對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問(wèn)題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書,課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書,從而鞏固余弦定理的運(yùn)用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】例題1分別是通過(guò)已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。
例2對(duì)于例題1(2),求的大小。
【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問(wèn)題可以避免解的取舍問(wèn)題。
例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),
【設(shè)計(jì)意圖】例3通過(guò)對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。
課堂練習(xí):
練習(xí)1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。
練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。
a、能組成直角三角形。
b、能組成銳角三角形。
c、能組成鈍角三角形。
d、不能組成三角形。
【設(shè)計(jì)意圖】與例題3相呼應(yīng)。
練習(xí)3在中,已知,試求的大小。
【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。
4、課堂小結(jié),布置作業(yè)。
先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):
(3)余弦定理的可以解決的兩類解斜三角形的問(wèn)題。
通過(guò)師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。
布置作業(yè)。
必做題:習(xí)題1、2、1、2、3、5、6;
選做題:習(xí)題1、2、12、13。
【設(shè)計(jì)意圖】。
作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。
各位老師,以上所說(shuō)只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。
本說(shuō)課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見(jiàn),謝謝。
定理與證明教案篇三
即直角三角形兩直角的平方和等于斜邊的平方.。
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.。
請(qǐng)讀者證明.。
請(qǐng)同學(xué)們自己證明圖(2)、(3).。
3.在數(shù)軸上表示無(wú)理數(shù)。
二、典例精析。
132-52=144,所以另一條直角邊的長(zhǎng)為12.。
所以這個(gè)直角三角形的面積是×12×5=30(cm2).。
例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到。
頂點(diǎn)b,則它走過(guò)的最短路程為。
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。
各棱長(zhǎng)相等,因此只有一種展開圖.。
解:將正方體側(cè)面展開。
定理與證明教案篇四
動(dòng)能定理是一條適用范圍很廣的物理定理,但教材在推導(dǎo)這一定理時(shí),由一個(gè)恒力做功使物體的動(dòng)能變化,得出力在一個(gè)過(guò)程中所作的功等于物體在這個(gè)過(guò)程中動(dòng)能的變化。然后逐步擴(kuò)展到幾個(gè)力做功和變力做功以及曲線運(yùn)動(dòng)的情況。這個(gè)梯度很大,為了幫助學(xué)生真正理解動(dòng)能定理,我設(shè)置了一些具體的問(wèn)題,逐步深入地進(jìn)行研究,讓學(xué)生尋找物體動(dòng)能的變化與哪些力做功相對(duì)應(yīng),從而使學(xué)生能夠順利的準(zhǔn)確的理解動(dòng)能定理的含義。
探究式教學(xué)是實(shí)現(xiàn)物理教學(xué)目標(biāo)的重要方法之一,()同時(shí)也是培養(yǎng)學(xué)生創(chuàng)新能力、發(fā)展學(xué)生非智力因素的重要途徑。因此,本節(jié)課我在教學(xué)設(shè)計(jì)時(shí)從動(dòng)能的概念入手就注重對(duì)學(xué)生的引導(dǎo),使學(xué)生在探究中提出問(wèn)題、設(shè)計(jì)方案、解決問(wèn)題。在操作上本節(jié)教學(xué)我注重為學(xué)生創(chuàng)設(shè)一個(gè)和諧自由的課堂氛圍,讓每一位同學(xué)都積極參與課堂教學(xué)。在動(dòng)能公式及動(dòng)能定理的推導(dǎo)過(guò)程中,有師生間的討論、分析,甚至是相互質(zhì)疑。本節(jié)課我運(yùn)用實(shí)驗(yàn)探究法,通過(guò)質(zhì)量相同的物體高度的不同和高度相同質(zhì)量不同的兩種情況,得出動(dòng)能和質(zhì)量速度的關(guān)系。用演繹推理法由動(dòng)能公式進(jìn)一步推導(dǎo)得出動(dòng)能定理。在探究過(guò)程中,重點(diǎn)引導(dǎo)學(xué)生從外力做功和物體的動(dòng)能變化量?jī)蓚€(gè)方面思考,選擇受力情況較為簡(jiǎn)單,動(dòng)能變化量比較容易得到的具體形式。在解題過(guò)程中,讓學(xué)生采用對(duì)比的方法,體會(huì)到了運(yùn)用動(dòng)能定理解決問(wèn)題的優(yōu)點(diǎn)和方法、步驟。讓學(xué)生采用這種自主探究式的學(xué)習(xí)方法進(jìn)行學(xué)習(xí),能夠有效得提高學(xué)生的學(xué)習(xí)興趣,提高課堂教學(xué)的效率。
定理與證明教案篇五
《動(dòng)能和動(dòng)能定理》是高中物理必修2第五章《機(jī)械能及其守恒定律》第七節(jié)的內(nèi)容,我從:教材分析、目標(biāo)分析、教法學(xué)法、教學(xué)過(guò)程、板書設(shè)計(jì)和教學(xué)反思六個(gè)緯度作如下匯報(bào):
一、教材分析。
1.內(nèi)容分析。
《動(dòng)能和動(dòng)能定理》主要學(xué)習(xí)一個(gè)物理概念:動(dòng)能;一個(gè)物理規(guī)律:動(dòng)能定理。從知識(shí)與技能上要掌握動(dòng)能表達(dá)式及其相關(guān)決定因素,動(dòng)能定理的物理意義和實(shí)際的應(yīng)用。
通過(guò)例題2的探究,理解正負(fù)功的物理意義,初步從能量守恒與轉(zhuǎn)化的角度認(rèn)識(shí)功。在態(tài)度情感與價(jià)值觀上,在嘗試解決程序性問(wèn)題的過(guò)程中,體驗(yàn)物理學(xué)科既是基于實(shí)驗(yàn)探究的一門實(shí)驗(yàn)性學(xué)科,同時(shí)也是嚴(yán)密數(shù)學(xué)語(yǔ)言邏輯的學(xué)科,只有兩種方法體系并重,才能有效地認(rèn)識(shí)自然,揭示客觀世界存在的物理規(guī)律。
2.內(nèi)容地位。
通過(guò)初中的學(xué)習(xí),對(duì)功和動(dòng)能概念已經(jīng)有了相關(guān)的認(rèn)識(shí),通過(guò)第六節(jié)的實(shí)驗(yàn)探究,認(rèn)識(shí)到做功與物體速度變化的關(guān)系。將本節(jié)課設(shè)計(jì)成一堂理論探究課有著積極的意義。因?yàn)橥ㄟ^(guò)“動(dòng)能定理”的學(xué)習(xí),深入理解“功是能量轉(zhuǎn)化的量度”,并在解釋功能關(guān)系上有著深遠(yuǎn)的意義。為此設(shè)計(jì)如下目標(biāo):
二、目標(biāo)分析。
1、三維教學(xué)目標(biāo)。
(一)、知識(shí)與技能。
1.理解動(dòng)能的'概念,并能進(jìn)行相關(guān)計(jì)算;
(二)、過(guò)程與方法。
1.掌握恒力作用下動(dòng)能定理的推導(dǎo);
2.體會(huì)變力作用下動(dòng)能定理解決問(wèn)題的優(yōu)越性;
(三)、情感態(tài)度與價(jià)值觀。
體會(huì)“狀態(tài)的變化量量度復(fù)雜過(guò)程量”這一物理思想;感受數(shù)學(xué)語(yǔ)言對(duì)物理過(guò)程描述的。
簡(jiǎn)潔美;
2.教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):對(duì)動(dòng)能公式和動(dòng)能定理的理解與應(yīng)用。
難點(diǎn):通過(guò)對(duì)動(dòng)能定理的理解,加深對(duì)功、能關(guān)系的認(rèn)識(shí)。
三、教法和學(xué)法。
學(xué)生的學(xué)法采?。喝蝿?wù)驅(qū)動(dòng)和合作探究;
選取多媒體展示、嘗試練習(xí)題和“任務(wù)驅(qū)動(dòng)問(wèn)題”本節(jié)課為一課時(shí)。
四、教學(xué)過(guò)程。
設(shè)計(jì)成6個(gè)教學(xué)環(huán)節(jié):提出問(wèn)題,導(dǎo)入新課;任務(wù)驅(qū)動(dòng),感知教材;合作探究,分享交流;精講點(diǎn)撥,釋疑解惑;典例引領(lǐng),內(nèi)化反思;課堂總結(jié),布置作業(yè)。
將本文的word文檔下載到電腦,方便收藏和打印。
定理與證明教案篇六
教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題。
教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用。
教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用。
引
二.探。
閱讀教材p44至p45。
利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說(shuō)出你的做法及其道理嗎?
(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
證一證。
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)。
三.結(jié)。
兩組對(duì)邊分別相等的四邊形是平行四邊形。
對(duì)角線互相平分的四邊形是平行四邊形。
四.用。
定理與證明教案篇七
學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
2、過(guò)程與方法。
(1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力。
(2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想。
3、情感態(tài)度與價(jià)值觀。
(1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣。
(2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
教學(xué)重點(diǎn):
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題。
教學(xué)難點(diǎn):
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題。
教學(xué)準(zhǔn)備:
多媒體。
教學(xué)過(guò)程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。
情景:
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。
學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。
教材23頁(yè)。
李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務(wù)嗎?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)。
2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問(wèn)答)。
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問(wèn)題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。
作業(yè):1.課本習(xí)題1.5第1,2,3題.。
要求:a組(學(xué)優(yōu)生):1、2、3。
b組(中等生):1、2。
c組(后三分之一生):1。
定理與證明教案篇八
知識(shí)與技能:
1、了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法。
2、了解勾股定理的內(nèi)容。
3、能利用已知兩邊求直角三角形另一邊的長(zhǎng)。
過(guò)程與方法:
1、通過(guò)拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。
2、在探索活動(dòng)中,學(xué)會(huì)與人合作,并能與他人交流思維的過(guò)程和探索的結(jié)果。
情感與態(tài)度:
1、通過(guò)對(duì)勾股定理歷史的了解,對(duì)比介紹我國(guó)古代和西方數(shù)學(xué)家關(guān)于勾股定理的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感,激勵(lì)學(xué)生奮發(fā)學(xué)習(xí)。
2、在探索勾股定理的過(guò)程中,體驗(yàn)獲得結(jié)論的快樂(lè),鍛煉克服困難的勇氣,培養(yǎng)合作意識(shí)和探索精神。
二教學(xué)重、難點(diǎn)。
重點(diǎn):探索和證明勾股定理難點(diǎn):用拼圖方法證明勾股定理。
三、學(xué)情分析。
學(xué)生對(duì)幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識(shí),通過(guò)學(xué)習(xí)小組討論交流,能夠形成解決問(wèn)題的思路。
四、教學(xué)策略。
本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問(wèn)題,鼓勵(lì)學(xué)生采用觀察分析、自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程。
五、教學(xué)過(guò)程。
教學(xué)環(huán)節(jié)。
教學(xué)內(nèi)容。
活動(dòng)和意圖。
創(chuàng)設(shè)情境導(dǎo)入新課。
以“航天員在太空中遇到外星人時(shí),用什么語(yǔ)言進(jìn)行溝通”導(dǎo)入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進(jìn)行和外星人溝通,為什么呢?通過(guò)一段vcr說(shuō)明原因。
[設(shè)計(jì)意圖]激發(fā)學(xué)生對(duì)勾股定理的興趣,從而較自然的引入課題。
新知探究。
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。
(1)同學(xué)們,請(qǐng)你也來(lái)觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?
(2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?
通過(guò)講述故事來(lái)進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生在不知不覺(jué)中進(jìn)入學(xué)習(xí)的最佳狀態(tài)。
如圖,每個(gè)小方格代表1個(gè)單位面積,我們分別以a,b,c三邊為邊長(zhǎng)作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計(jì)算正方形a、b、c面積?
(2)怎樣求出正方形面積c?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長(zhǎng)a,b,c有何數(shù)量關(guān)系?
引導(dǎo)學(xué)生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.
問(wèn)題是思維的起點(diǎn)”,通過(guò)層層設(shè)問(wèn),引導(dǎo)學(xué)生發(fā)現(xiàn)新知。
探究交流歸納。
拼圖驗(yàn)證加深理解。
如圖,每個(gè)小方格代表1個(gè)單位面積,我們分別以a,b,c三邊為邊長(zhǎng)作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計(jì)算正方形p、q、r的面積?
(2)怎樣求出正方形面積r?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長(zhǎng)a,b,c有何數(shù)量關(guān)系?
由以上兩問(wèn)題可得猜想:
直角三角形兩直角邊的平方和等于斜邊的平方。
而猜想要通過(guò)證明才能成為定理。
活動(dòng)探究:
(1)讓學(xué)生利用學(xué)具進(jìn)行拼圖。
(2)多媒體課件展示拼圖過(guò)程及證明過(guò)程理解數(shù)學(xué)的嚴(yán)密性。
從特殊的等腰直角三角形過(guò)渡到一般的直角三角形。
滲透從特殊到一般的數(shù)學(xué)思想.為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問(wèn)題的能力,使學(xué)生在相互欣賞、爭(zhēng)辯、互助中得到提高。
通過(guò)這些實(shí)際操作,學(xué)生進(jìn)行一步加深對(duì)數(shù)形結(jié)合的理解,拼圖也會(huì)產(chǎn)生感性認(rèn)識(shí),也為論證勾股定理做好準(zhǔn)備。
利用分組討論,加強(qiáng)合作意識(shí)。
1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
2、加強(qiáng)數(shù)學(xué)嚴(yán)密教育,從而更好地理解代數(shù)與圖形相結(jié)合。
應(yīng)用新知解決問(wèn)題。
在應(yīng)用新知這個(gè)環(huán)節(jié),我把以往的單純求解邊長(zhǎng)之類的題目換成了幾個(gè)運(yùn)用勾股定理來(lái)解決問(wèn)題的古算題。
把生活中的實(shí)物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別注重培養(yǎng)學(xué)生認(rèn)識(shí)事物,探索問(wèn)題,解決實(shí)際的能力。
回顧小結(jié)整體感知。
在最后的小結(jié)中,不但對(duì)知識(shí)進(jìn)行小結(jié)更對(duì)方法要進(jìn)行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達(dá)哥拉斯樹,讓學(xué)生切身感受到其實(shí)數(shù)學(xué)與生活是緊密聯(lián)系的,進(jìn)一步發(fā)現(xiàn)數(shù)學(xué)的另一種美。
學(xué)生通過(guò)對(duì)學(xué)習(xí)過(guò)程的小結(jié),領(lǐng)會(huì)其中的數(shù)學(xué)思想方法;通過(guò)梳理所學(xué)內(nèi)容,形成完整知識(shí)結(jié)構(gòu),培養(yǎng)歸納概括能力。。
布置作業(yè)鞏固加深。
必做題:
1.完成課本習(xí)題1,2,3題。
選做題:
針對(duì)學(xué)生認(rèn)知的差異設(shè)計(jì)了有層次的作業(yè)題,既使學(xué)生鞏固知識(shí),形成技能,讓感興趣的學(xué)生課后探索,感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
定理與證明教案篇九
中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:
周公問(wèn):“我聽說(shuō)您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒(méi)有梯子可以上去,地也沒(méi)法用尺子去一段一段丈量,那么
怎樣
才能得到關(guān)于
天地得到數(shù)據(jù)呢?”商高回答說(shuō):“數(shù)的產(chǎn)生來(lái)源于對(duì)方和圓這些形體餓認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時(shí)候,那么它的斜邊‘弦’就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來(lái)的呵?!?/p>
從上面所引的這段對(duì)話中,我們可以清楚地看到,我國(guó)古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。
用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來(lái)表示斜邊,則可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實(shí),我國(guó)古代得到人民對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。如果說(shuō)大禹治水因年代久遠(yuǎn)而無(wú)法確切考證的話,那么周公與商高的.對(duì)話則可以確定在公元前1100年左右的西周時(shí)期,比畢達(dá)哥拉斯要早了
五百
多年。其中所說(shuō)的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理,應(yīng)該是非常恰當(dāng)?shù)摹?/p>在稍后一點(diǎn)的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說(shuō);“把勾和股分別自乘,然后把它們的積加起來(lái),再進(jìn)行開方,便可以得到弦?!卑堰@段話列成算式,即為:
弦=(勾2+股2)(1/2)
亦即:
c=(a2+b2)(1/2)
中國(guó)古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。最早對(duì)勾股定理進(jìn)行證明的,是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,以弦為邊長(zhǎng)得到正方形abde是由4個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成的。每個(gè)直角三角形的面積為ab/2;中間懂得小正方形邊長(zhǎng)為b-a,則面積為(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2
化簡(jiǎn)后便可得:
a2+b2=c2
亦即:
c=(a2+b2)(1/2)
趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識(shí)。他用幾何圖形的截、割、拼、補(bǔ)來(lái)證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國(guó)古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹立了一個(gè)典范。以后的數(shù)學(xué)家大多繼承了這一風(fēng)格并且代有發(fā)展。例如稍后一點(diǎn)的劉徽在證明勾股定理時(shí)也是用的以形證數(shù)的方法,只是具體圖形的分合移補(bǔ)略有不同而已。
中國(guó)古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位。尤其是其中體現(xiàn)出來(lái)的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。事實(shí)上,“形數(shù)統(tǒng)一”的思想方法正是數(shù)學(xué)發(fā)展的一個(gè)極其重要的條件。正如當(dāng)代中國(guó)數(shù)學(xué)家吳文俊所說(shuō):“在中國(guó)的傳統(tǒng)數(shù)學(xué)中,數(shù)量關(guān)系與空間形式往往是形影不離地并肩發(fā)展著的......十七世紀(jì)笛卡兒解析幾何的發(fā)明,正是中國(guó)這種傳統(tǒng)思想與方法在幾百年停頓后的重現(xiàn)與繼續(xù)?!?。
定理與證明教案篇十
生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形.。
生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形.。
二、講授新課。
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?
活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)?
定理與證明教案篇十一
1,根據(jù)定義:三角形兩邊中點(diǎn)之間的'線段為三角形的中位線。
2.經(jīng)過(guò)三角形一邊中點(diǎn)與另一邊平行的直線與第三邊相交,交點(diǎn)與中點(diǎn)之間的線段為三角形的中位線。
3.端點(diǎn)在三角形的兩邊上與第三邊平行且等于第三邊的一半的線段為三角形的中位線。
定理與證明教案篇十二
本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過(guò)了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過(guò)渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來(lái),實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問(wèn)題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。
在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。
基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:
基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問(wèn)題出發(fā),發(fā)現(xiàn)無(wú)法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問(wèn)題,最終形成概念,獲得方法,培養(yǎng)能力。
在教學(xué)中利用計(jì)算機(jī)多媒體來(lái)輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。
為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過(guò)程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過(guò)程如下:
1、創(chuàng)設(shè)情境,引入課題
利用多媒體引出如下問(wèn)題:
a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。
【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過(guò)正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無(wú)法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。
2、探索研究、構(gòu)建新知
(1)由于初中接觸的是解直角三角形的問(wèn)題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形( )時(shí)考慮。此時(shí)使用勾股定理,得。
(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形( )中。
通過(guò)解決問(wèn)題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。
在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類比向量法證明正弦定理的過(guò)程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來(lái)表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。
根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問(wèn)題:
(1)已知三邊,求三個(gè)角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。
3、例題講解、鞏固練習(xí)
本階段的教學(xué)主要是通過(guò)對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問(wèn)題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書,課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書,從而鞏固余弦定理的運(yùn)用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】例題1分別是通過(guò)已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。
例2對(duì)于例題1(2),求的大小。
【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問(wèn)題可以避免解的取舍問(wèn)題。
例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),
【設(shè)計(jì)意圖】例3通過(guò)對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。
課堂練習(xí):
練習(xí)1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。
練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。
a、能組成直角三角形
b、能組成銳角三角形
c、能組成鈍角三角形
d、不能組成三角形
【設(shè)計(jì)意圖】與例題3相呼應(yīng)。
練習(xí)3在中,已知,試求的大小。
【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。
4、課堂小結(jié),布置作業(yè)
先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):
(1)余弦定理的內(nèi)容和公式;
(2)余弦定理實(shí)質(zhì)上是勾股定理的推廣;
(3)余弦定理的可以解決的兩類解斜三角形的問(wèn)題。
通過(guò)師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。
布置作業(yè)
必做題:習(xí)題1、2、1、2、3、5、6;
選做題:習(xí)題1、2、12、13。
作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。
各位老師,以上所說(shuō)只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。
本說(shuō)課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見(jiàn),謝謝。
定理與證明教案篇十三
人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過(guò)利用向量的數(shù)量積方法推導(dǎo)余弦定理,正確理解其結(jié)構(gòu)特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問(wèn)題,初步體會(huì)余弦定理解決“邊、邊、角”,體會(huì)方程思想,激發(fā)學(xué)生探究數(shù)學(xué),應(yīng)用數(shù)學(xué)的潛能。
本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識(shí)和正弦定理有關(guān)內(nèi)容,對(duì)于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識(shí)。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣??傮w上學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí)不強(qiáng),創(chuàng)造力較弱,看待與分析問(wèn)題不深入,知識(shí)的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度,在發(fā)掘出余弦定理的結(jié)構(gòu)特征、表現(xiàn)形式的數(shù)學(xué)美時(shí),能夠激發(fā)學(xué)生熱愛(ài)數(shù)學(xué)的思想感情;從具體問(wèn)題中抽象出數(shù)學(xué)的本質(zhì),應(yīng)用方程的思想去審視,解決問(wèn)題是學(xué)生學(xué)習(xí)的一大難點(diǎn)。
新課程的數(shù)學(xué)提倡學(xué)生動(dòng)手實(shí)踐,自主探索,合作交流,深刻地理解基本結(jié)論的本質(zhì),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,力求對(duì)現(xiàn)實(shí)世界蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考,作出判斷;同時(shí)要求教師從知識(shí)的傳授者向課堂的設(shè)計(jì)者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱?、探究開發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動(dòng)合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),深刻地體會(huì)數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識(shí)的潛能。
繼續(xù)探索三角形的邊長(zhǎng)與角度間的具體量化關(guān)系、掌握余弦定理的兩種表現(xiàn)形式,體會(huì)向量方法推導(dǎo)余弦定理的思想;通過(guò)實(shí)踐演算運(yùn)用余弦定理解決“邊、角、邊”及“邊、邊、邊”問(wèn)題;深化與細(xì)化方程思想,理解余弦定理的本質(zhì)。通過(guò)相關(guān)教學(xué)知識(shí)的聯(lián)系性,理解事物間的普遍聯(lián)系性。
教學(xué)重點(diǎn)是余弦定理的發(fā)現(xiàn)過(guò)程及定理的應(yīng)用;教學(xué)難點(diǎn)是用向量的數(shù)量積推導(dǎo)余弦定理的思路方法及余弦定理在應(yīng)用求解三角形時(shí)的思路。
本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計(jì)時(shí)既要兼顧前后知識(shí)的聯(lián)系,又要使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識(shí)逐漸地融為一體,構(gòu)建比較完整的知識(shí)系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問(wèn)題。本課教學(xué)設(shè)計(jì)力求在型(模型、類型),質(zhì)(實(shí)質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過(guò)三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡(jiǎn)潔的工具。因此在本課的教學(xué)設(shè)計(jì)中抓住前后知識(shí)的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對(duì)數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識(shí)數(shù)學(xué)與實(shí)際的聯(lián)系,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)和方法解決一些實(shí)際問(wèn)題。學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造力不足、看待問(wèn)題不深入,很大原因在于學(xué)生的知識(shí)系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問(wèn)題,在提出問(wèn)題、思考分析問(wèn)題、解決問(wèn)題等多方面對(duì)學(xué)生進(jìn)行示范引導(dǎo),將舊知識(shí)與新知識(shí)進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識(shí)結(jié)構(gòu)。
定理與證明教案篇十四
雖然現(xiàn)在已經(jīng)有不少人用不同方法證明出了四色定理,但我認(rèn)為四色定理的證明還是有點(diǎn)復(fù)雜,所以給出以下證明。(注:圖形與圖形的位置關(guān)系可分為相離、包含、內(nèi)向接、內(nèi)向切、外向接、外向切,在此文中由于題意關(guān)系不妨重新分為以下關(guān)系:1把包含、內(nèi)向接、內(nèi)向切,統(tǒng)一劃分為包含關(guān)系。2把外向接單獨(dú)劃分為相接關(guān)系。3把相離、外相切統(tǒng)一劃分為相離關(guān)系。)。
此證明過(guò)程中把圖的組合形式按照其位置關(guān)系而抽離出了以下四種基本有效模式:若要存在只需用一種顏色便能彼此區(qū)分開來(lái)的地圖,則該圖中所有圖形必定滿足彼此相離。如下圖:
圖(1)。
分析:這是最簡(jiǎn)單的一種圖形關(guān)系模式暫且稱為模式a。若要存在只需用兩種顏色便能彼此區(qū)分開來(lái)的地圖,則該圖中的所有圖形必定滿足最多只存在兩個(gè)圖形的兩兩相交的圖形。各種有效圖形關(guān)系如下圖:
圖(2)。
分析:兩個(gè)圖形的兩兩相交的所有圖形關(guān)系均可變形而得出等價(jià)的以上兩種圖形關(guān)系模式之。
一。由于圖(1)存在包含關(guān)系,被包含的圖形是對(duì)外部無(wú)影響的,所以圖(1)仍屬于模式a。所以兩個(gè)圖形的兩兩相交只有圖(2)的相交關(guān)系模式的圖形有效的,我們暫且稱之為模式b。若要存在只需用三種顏色便能彼此區(qū)分開來(lái)的地圖,則給圖中所有圖形必定滿足最多只存在三個(gè)圖形的兩兩相交圖形。各種有效圖形關(guān)系如下圖:
圖(3)。
分析:三個(gè)圖形的兩兩相交的所有圖形關(guān)系均可變形而得出等價(jià)的以上兩種圖形關(guān)系模式之。
一。由于圖(2)屬于存在包含關(guān)系,同理整體回歸于模式a。所以三個(gè)圖形的兩兩相交只有圖(1)的相接關(guān)系模式的圖形是有效圖形模式,我們暫且稱之為模式c。若要存在只需用四種顏色便能彼此區(qū)分開來(lái)的地圖,則給圖中所有圖形必定滿足最多只存在四個(gè)圖形的兩兩相交圖形。各種有效圖形關(guān)系如下圖:
圖(4)。
分析:四個(gè)圖形的兩兩相交的所有圖形關(guān)系均可變形而得出等價(jià)的以上兩種圖形關(guān)系。由于圖(2)屬于存在包含關(guān)系,同理可得出整體也就回歸于圖形模式a。同樣我們暫且稱圖(1)的圖形關(guān)系模式為模式d。觀察易得,已經(jīng)擁有四個(gè)有效圖形的模式d有一個(gè)圖形是被包圍的,所以在此基礎(chǔ)上在球面或是平面上是不可能誕生有五個(gè)圖形兩兩相交而組成的模式e了,由于以上的四種基本的有效模式均可由四種以內(nèi)的顏色彼此分開。所以在平面或球面上四種顏色已足以把它們彼此區(qū)分。另外至于在環(huán)形體或丁形體上,則可用此方法得出五色定理和六色定理。
定理與證明教案篇十五
研究生考試中高等數(shù)學(xué)確實(shí)是一門比較難的課程,其中的基礎(chǔ)知識(shí)點(diǎn)很多,有大量的定理與重要結(jié)論,如果不系統(tǒng)地對(duì)知識(shí)進(jìn)行層次化的歸類,那么考生就會(huì)覺(jué)得高數(shù)課本上的內(nèi)容多,而且學(xué)了后面就會(huì)忘記前面的內(nèi)容。對(duì)于課本中的定理與重要結(jié)論,專家建議考生將它們自己推導(dǎo)一遍,并且記住各定理,結(jié)論的應(yīng)用場(chǎng)景。
另外要提醒考生的就是:微積分這個(gè)子系統(tǒng)非常重要,它是其它各子系統(tǒng)的基石,而且在概率統(tǒng)計(jì)中大量會(huì)用到微積分的理論與解題技巧,所以請(qǐng)務(wù)必重視。
把握出題難度,了解常見(jiàn)題型的技巧。
在現(xiàn)階段一定要有針對(duì)性地進(jìn)行復(fù)習(xí),所做題目的難度不能太小,當(dāng)然也不能過(guò)于偏,而且復(fù)習(xí)要形成系統(tǒng)的知識(shí)體系結(jié)構(gòu)。將做過(guò)的題目進(jìn)行總結(jié)。專家建議考生,目前階段不要過(guò)于鉆研偏題怪題??佳胁皇菙?shù)學(xué)競(jìng)賽,不會(huì)出現(xiàn)這類題目,因此完全沒(méi)必要浪費(fèi)時(shí)間。復(fù)習(xí)中,遇到比較難的題目,自己獨(dú)立解決確實(shí)能顯著提高能力。但復(fù)習(xí)時(shí)間畢竟有限,在確定思考不出結(jié)果時(shí),要及時(shí)尋求幫助。一定要避免一時(shí)性起,盯住一個(gè)題目做一個(gè)晚上的沖動(dòng)。要充分借助老師、同學(xué)的幫助,將題目弄通搞懂、下次自己會(huì)做即可,不要耽誤太多時(shí)間。另外無(wú)論是大題還是小題,都要細(xì)心。每年許多考生容易在看似不起眼的選擇題和填空題上失很多分。其實(shí)選擇與填空題在數(shù)學(xué)考卷中所占的比重很大,這些題目的解答往往會(huì)“一失足成千古恨”,稍不留神,一步做錯(cuò)就全軍覆沒(méi)。不能說(shuō)只要考場(chǎng)上認(rèn)真,仔細(xì)地做題就不會(huì)有“會(huì)做但做錯(cuò)”的情況出現(xiàn),應(yīng)該平時(shí)做題就態(tài)度認(rèn)真。
將解題技巧變成自己的內(nèi)功。
根據(jù)自己的總結(jié)或在權(quán)威考研輔導(dǎo)機(jī)構(gòu)的.幫助下,考生可以知道常規(guī)的題型和解題方法與技巧,但考生如何才能真正吸收消化這些知識(shí)以成為自己的知識(shí)呢?那就是要進(jìn)行相當(dāng)量的綜合題型的練習(xí)。因?yàn)樵趶?fù)習(xí)過(guò)程中,不少考生會(huì)漸漸地有能力解答一些考研的基本題目,但如果給他一道較為綜合的大題,他就無(wú)從下手了。所以要做一定量的綜合題。
首先從心理上就不要害怕這樣的題目,因?yàn)榇箢}目肯定是可以分解為若干個(gè)小題目的。這樣一來(lái),考生要掌握的東西就顯然被分為了兩個(gè)大方向。一是小題目,實(shí)質(zhì)上也就是基礎(chǔ)知識(shí)點(diǎn)的掌握與常規(guī)題型的熟練掌握;二是要能夠?qū)⒋箢}目拆分為小題目,也就是說(shuō)能夠逆出題專家的思維方式來(lái)推測(cè)此大題目是想考我們什么知識(shí)點(diǎn)。陷阱在哪兒?我們應(yīng)該分為幾個(gè)步驟來(lái)解這道題。這兩個(gè)方面的知識(shí)是考生平時(shí)復(fù)習(xí)整個(gè)過(guò)程中要加以思考的問(wèn)題,因?yàn)榛A(chǔ)知識(shí)點(diǎn)要不斷地鞏固加強(qiáng),將大問(wèn)題細(xì)分的能力是平時(shí)的日積月累而形成的本領(lǐng)。
定理與證明教案篇十六
勾股定理是幾何學(xué)中的明珠,所以它充滿魅力,千百年來(lái),人們對(duì)它的證明趨之若騖,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛(ài)好者,有普通的老百姓,也有尊貴的政要權(quán)貴,甚至有國(guó)家總統(tǒng)。也許是因?yàn)楣垂啥ɡ砑戎匾趾?jiǎn)單,更容易吸引人,才使它成百次地反復(fù)被人炒作,反復(fù)被人論證。1940年出版過(guò)一本名為《畢達(dá)哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實(shí)際上還不止于此,有資料表明,關(guān)于勾股定理的證明方法已有500余種,僅我國(guó)清末數(shù)學(xué)家華蘅芳就提供了二十多種精彩的證法。這是任何定理無(wú)法比擬的。
在這數(shù)百種證明方法中,有的十分精彩,有的十分簡(jiǎn)潔,有的因?yàn)樽C明者身份的特殊而非常著名。
首先介紹勾股定理的兩個(gè)最為精彩的證明,據(jù)說(shuō)分別來(lái)源于中國(guó)和希臘。
2
劉徽在證明勾股定理時(shí),也是用的以形證數(shù)的方法,只是具體的分合移補(bǔ)略有不同.劉徽的證明原也有一幅圖,可惜圖已失傳,只留下一段文字:“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不動(dòng)也,合成弦方之冪.開方除之,即弦也.”后人根據(jù)這段文字補(bǔ)了一張圖。大意是:三角形為直角三角形,以勾a為邊的正方形為朱方,以股b為邊的正方形為青方。以盈補(bǔ)虛,將朱方、青放并成弦方。依其面積關(guān)系有a^+b^=c^.由于朱方、青方各有一部分在弦方內(nèi),那一部分就不動(dòng)了。以勾為邊的的正方形為朱方,以股為邊的正方形為青方。以贏補(bǔ)虛,只要把圖中朱方(a2)的i移至i′,青方的ii移至ii′,iii移至iii′,則剛好拼好一個(gè)以弦為邊長(zhǎng)的正方形(c的平方).由此便可證得a的`平方+b的平方=c的平方。這個(gè)證明是由三國(guó)時(shí)代魏國(guó)的數(shù)學(xué)家劉徽所提出的。在魏景元四年(即公元263年),劉徽為古籍《九章算術(shù)》作注釋。在注釋中,他畫了一幅像圖五(b)中的圖形來(lái)證明勾股定理。由於他在圖中以「青出」、「朱出」表示黃、紫、綠三個(gè)部分,又以「青入」、「朱入」解釋如何將斜邊正方形的空白部分填滿,所以后世數(shù)學(xué)家都稱這圖為「青朱入出圖」。亦有人用「出入相補(bǔ)」這一詞來(lái)表示這個(gè)證明的原理。
3
這個(gè)定理有許多證明的方法,其證明的方法可能是數(shù)學(xué)眾多定理中最多的。路明思(elishascottloomis)的pythagoreanproposition一書中總共提到367種證明方式。
有人會(huì)嘗試以三角恒等式(例如:正弦和余弦函數(shù)的泰勒級(jí)數(shù))來(lái)證明勾股定理,但是,因?yàn)樗械幕救呛愕仁蕉际墙ɑ诠垂啥ɡ恚圆荒茏鳛楣垂啥ɡ淼淖C明(參見(jiàn)循環(huán)論證)。
利用相似三角形的證法。
利用相似三角形證明。
設(shè)abc為一直角三角形,直角于角c(看附圖).從點(diǎn)c畫上三角形的高,并將此高與ab的交叉點(diǎn)稱之為h。此新三角形ach和原本的三角形abc相似,因?yàn)樵趦蓚€(gè)三角形中都有一個(gè)直角(這又是由于“高”的定義),而兩個(gè)三角形都有a這個(gè)共同角,由此可知第三只角都是相等的。同樣道理,三角形cbh和三角形abc也是相似的。這些相似關(guān)系衍生出以下的比率關(guān)系:
因?yàn)閎c=a,ac=b,ab=c。
所以a/c=hb/aandb/c=ah/b。
可以寫成a*a=c*hbandb*b=c*ah。
換句話說(shuō):a*a+b*b=c*c。
[*]----為乘號(hào)。
定理與證明教案篇十七
茲有________學(xué)校__________學(xué)院______專業(yè)_________同學(xué)于_________年___月____日至_____年______月日在實(shí)習(xí)。
該同學(xué)的實(shí)習(xí)職位是_____________。
該學(xué)生在實(shí)習(xí)期間工作認(rèn)真,腳踏實(shí)地,虛心請(qǐng)教并且努力掌握工作技能,善于思考,能夠舉一反三。善解人意,積極配合領(lǐng)導(dǎo)及同事的工作,虛心聽取他人意見(jiàn)。在時(shí)間緊迫的情況下,能夠加時(shí)加班完成任務(wù)。能夠?qū)⒃趯W(xué)校所學(xué)的知識(shí)靈活應(yīng)用到具體的工作中去,保質(zhì)保量完成工作任務(wù)。同時(shí),本公司將要求該學(xué)生嚴(yán)格遵守我公司的各項(xiàng)規(guī)章制度,實(shí)習(xí)時(shí)間,服從實(shí)習(xí)安排,完成實(shí)習(xí)任務(wù),尊敬實(shí)習(xí)單位人員,并能與公司同事和睦相處。與其一同合作的員工都對(duì)該學(xué)生的表現(xiàn)予以肯定。
特此證明。
證明人:_________(實(shí)習(xí)單位蓋章)。
_________年____月____日。
【本文地址:http://www.aiweibaby.com/zuowen/16827900.html】