編寫教案可以讓教師更好地掌握教材內(nèi)容,準備充分的教學素材。教案的編寫需要重視學生的個性差異,因材施教。這個教案充分調(diào)動了學生的積極性和主動性,提高了學生的學習效果
二次函數(shù)與冪函數(shù)教案篇一
通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進一步舉例說明,從而得出二次函數(shù)與一元二次方程的關(guān)系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。
二教學目標。
1知識與技能。
(1)。經(jīng)歷探索函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系??偨Y(jié)出二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,表述何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根。
(2)。會利用圖象法求一元二次方程的近似解。
2過程與方法。
經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系。
三情感態(tài)度價值觀。
通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況培養(yǎng)學生自主探索意識,從中體會事物普遍聯(lián)系的觀點,進一步體會數(shù)形結(jié)合思想。
四教學重點和難點。
重點:方程與函數(shù)之間的聯(lián)系,會利用二次函數(shù)的圖象求一元二次方程的近似解。
難點:二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
五教學方法。
討論探索法。
六教學過程設(shè)計。
(一)問題的提出與解決。
h=20t5t2。
考慮以下問題。
(1)球的飛行高度能否達到15m?如能,需要多少飛行時間?
(2)球的飛行高度能否達到20m?如能,需要多少飛行時間?
(3)球的飛行高度能否達到20.5m?為什么?
(4)球從飛出到落地要用多少時間?
分析:由于球的飛行高度h與飛行時間t的關(guān)系是二次函數(shù)。
h=20t-5t2。
所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實際的解,則說明球的飛行高度可以達到問題中h的值:否則,說明球的飛行高度不能達到問題中h的值。
解:(1)解方程15=20t5t2。t24t+3=0。t1=1,t2=3。
當球飛行1s和3s時,它的高度為15m。
(2)解方程20=20t-5t2。t2-4t+4=0。t1=t2=2。
當球飛行2s時,它的高度為20m。
(3)解方程20.5=20t-5t2。t2-4t+4.1=0。
因為(-4)2-44.10。所以方程無解。球的飛行高度達不到20.5m。
(4)解方程0=20t-5t2。t2-4t=0。t1=0,t2=4。
當球飛行0s和4s時,它的高度為0m,即0s時球從地面飛出。4s時球落回地面。
由學生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?
例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。
分析可以解一元二次方程-x2+4x=3(即x2-4x+3=0)。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。
一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。
(二)問題的討論。
(2)y=x2-6x+9;。
(3)y=x2-x+0。
的圖象如圖26.2-2所示。
先畫出以上二次函數(shù)的圖象,由圖像學生展開討論,在老師的引導下回答以上的問題。
可以看出:
(1)拋物線y=x2+x-2與x軸有兩個公共點,它們的橫坐標是-2,1。當x取公共點的橫坐標時,函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。
(2)拋物線y=x2-6x+9與x軸有一個公共點,這點的橫坐標是3。當x=3時,函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個相等的實數(shù)根3。
(3)拋物線y=x2-x+1與x軸沒有公共點,由此可知,方程x2-x+1=0沒有實數(shù)根。
總結(jié):一般地,如果二次函數(shù)y=的圖像與x軸相交,那么交點的橫坐標就是一元二次方程=0的根。
(三)歸納。
一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,
(1)如果拋物線y=ax2+bx+c與x軸有公共點,公共點的橫坐標是x0,那么當x=x0時,函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個根。
(2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。
由上面的`結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。
(四)例題。
例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1)。
解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點的橫坐標大約是-0.7,2.7。
所以方程x2-2x-2=0的實數(shù)根為x1-0.7,x22.7。
七小結(jié)。
二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。
八板書設(shè)計。
用函數(shù)觀點看一元二次方程。
拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系。
例題。
二次函數(shù)與冪函數(shù)教案篇二
這節(jié)課我首先讓學生思考了三個列函數(shù)關(guān)系式的實際問題,接著在學生探究這三個實際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進行了鞏固應(yīng)用。本節(jié)課通過豐富的現(xiàn)實背景,使學生感受二次函數(shù)的意義,感受數(shù)學的廣泛聯(lián)系和應(yīng)用價值。通過學生的探究性活動(經(jīng)歷數(shù)學化的過程),和學生之間的合作與交流,通過分析實際問題,引出二次函數(shù)的概念,使學生感受二次函數(shù)與生活的密切聯(lián)系。在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計了不同題型的問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達到了較好的教學效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預設(shè)好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學基本任務(wù)完成。
將本文的word文檔下載到電腦,方便收藏和打印。
二次函數(shù)與冪函數(shù)教案篇三
二次函數(shù)的最大值,最小值及增減性的理解和求法·。
三、解答題。
7·(1)請在坐標系中畫出二次函數(shù)y=x2—2x的大致圖象;
(3)觀察圖象,直接寫出方程x2—2x=1的根(精確到0·1)·。
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;
二次函數(shù)與冪函數(shù)教案篇四
1.質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學模型。
3.學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
二次函數(shù)與冪函數(shù)教案篇五
學習目標:
1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對函數(shù)性質(zhì)進行研究。
3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學生的運用能力。
學習重點:
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究。
學習難點:
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
學習過程:
一、學前準備。
函數(shù)的三種表示方式,即表格、表達式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價與購買數(shù)量之間的關(guān)系如下:
x(千克)00。511。522。53。
y(元)0123456。
二、探究活動。
(一)合作探究:
交流完成:
(1)一邊長為xcm,則另一邊長為cm,所以面積為:用函數(shù)表達式表示:=________________________________。
(2)表格表示:
123456789。
10—。
(3)畫出圖象。
(二)議一議。
(1)在上述問題中,自變量x的取值范圍是什么?
(2)當x取何值時,長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。
點撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請大家互相交流。
(1)因為x是邊長,所以x應(yīng)取數(shù),即x0,又另一邊長(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個條件應(yīng)該同時滿足,所以x的取值范圍是。
(2)當x取何值時,長方形的面積最大,就是求自變量取何值時,函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點式。當x=—時,函數(shù)y有最大值y最大=。當x=時,長方形的面積最大,最大面積是25cm2。
可以通過觀察圖象得知。也可以代入頂點坐標公式中求得。。
(三)做一做:學生獨立思考完成p62,p63的函數(shù)表達式,表格,圖象問題。
(1)用函數(shù)表達式表示:y=________。
(2)用表格表示:
(3)用圖象表示:
三、學習體會。
本節(jié)課你有哪些收獲?你還有哪些疑問?
四、自我測試。
1、把長1。6米的鐵絲圍成長方形abcd,設(shè)寬為x(m),面積為y(m2)。則當最大時,所取的值是()。
a0。5b0。4c0。3d0。6。
2、兩個數(shù)的和為6,這兩個數(shù)的積最大可能達到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。
二次函數(shù)與冪函數(shù)教案篇六
(二)能力訓練要求。
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、
3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、
(三)情感與價值觀要求。
2、具有初步的創(chuàng)新精神和實踐能力、
二次函數(shù)與冪函數(shù)教案篇七
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
本節(jié)教學時間安排1課時。
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。
1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。
2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
預習作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
教師重點關(guān)注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。
問題。
1.課本p94問題.
3.結(jié)合預習題1,完成課本p94觀察中的題目。
師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。
1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。
2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。
3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
設(shè)計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設(shè)熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關(guān)系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。
[活動3]例題學習鞏固提高。
問題。
例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。
教師關(guān)注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
設(shè)計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習反饋鞏固新知。
二次函數(shù)與冪函數(shù)教案篇八
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
啟發(fā)引導 合作交流
課件
計算機、實物投影。
檢查預習 引出課題
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。
二次函數(shù)與冪函數(shù)教案篇九
讓學生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
:各種隱含條件的挖掘。
:引導發(fā)現(xiàn)法。
(一)診斷補償,情景引入:
(先讓學生復習,然后提問,并做進一步診斷)。
(二)問題導航,探究釋疑:
(三)精講提煉,揭示本質(zhì):
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
解由題意,得點b的坐標為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標代入,得所以因此,函數(shù)關(guān)系式是。
例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設(shè)二此函數(shù)的關(guān)系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學們自己完成。
(四)題組訓練,拓展遷移:
1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
二次函數(shù)與冪函數(shù)教案篇十
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關(guān)系;。
(2)分解因式的結(jié)果要以積的形式表示;。
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
(4)必須分解到每個多項式不能再分解為止。
活動5:應(yīng)用新知。
例題學習:
p166例1、例2(略)。
在教師的引導下,學生應(yīng)用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習。
1.p167練習;。
2.看誰連得準。
x2-y2(x+1)2。
9-25x2y(x-y)。
x2+2x+1(3-5x)(3+5x)。
xy-y2(x+y)(x-y)。
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a-3)=a2-9。
(2)a2-4=(a+2)(a-2)。
(3)a2-b2+1=(a+b)(a-b)+1。
(4)2πr+2πr=2π(r+r)。
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結(jié)。
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發(fā)言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學思想的理解。
活動8:課后作業(yè)。
課本p170習題的第1、4大題。
學生自主完成。
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應(yīng)用。
板書設(shè)計(需要一直留在黑板上主板書)。
15.4.1提公因式法例題。
1.因式分解的定義。
2.提公因式法。
二次函數(shù)與冪函數(shù)教案篇十一
分組復習舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學生從幾個方面進行討論:
(1)如何畫圖。
(2)頂點、圖象與坐標軸的交點。
(3)所形成的三角形以及四邊形的面積。
(4)對稱軸。
從上面的問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。
二次函數(shù)與冪函數(shù)教案篇十二
本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學生已學習了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的學習,是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎(chǔ)。
本節(jié)課中的教學重點利用描點法畫出二次函數(shù)的圖像,建構(gòu)符合學生認知結(jié)構(gòu)的知識體系,教學難點是運用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點坐標?;谝陨蠈滩牡恼J識,根據(jù)數(shù)學課程標準,考慮到學生已有的認知結(jié)構(gòu)與心理特征,制定如下的教學目標。
2.說目標。
【知識與能力】:
會用描點法畫出函數(shù)y=ax2的圖象。
知道拋物線的有關(guān)概念。
會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸以及拋物線與坐標軸的交點坐標。
【過程與方法】:
1、通過二次函數(shù)的教學進一步體會研究函數(shù)的一般方法,加深對于數(shù)形結(jié)合思想的認識。
2.綜合運用所學知識、方法去解決數(shù)學問題,培養(yǎng)學生提出、分析、解決、歸納問題的數(shù)學能力,改善學生的數(shù)學思維品質(zhì)。
【情感與態(tài)度目標】:
在數(shù)學教學中滲透美的教育,讓學生感受二次函數(shù)圖像的對2。
稱之美,激發(fā)學生的學習興趣。認識到數(shù)學源于生活,用于生活的辯證觀點。
3.說教學方法。
教法選擇與教學手段:基于本節(jié)課的特點是學習新知及其綜合運用,應(yīng)著重采用復習與總結(jié)的教學方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復習入手,通過提問思考、歸納總結(jié)、綜合運用等形式對二次函數(shù)圖像及其性質(zhì)進行有針對性的、系統(tǒng)性的教學。教學的模式為學生思考,討論,教師分析,演示、師生共同總結(jié)歸納。
利用白板的動態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進行分析比較和歸納。
學法指導:讓學生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
最后,我來具體談一談本節(jié)課的教學過程。
4.說教學過程。
(一)為對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行重構(gòu)做準備。通過回憶復習一次函數(shù)和反比例函數(shù)圖像及其性質(zhì)等相關(guān)知識引入新課。利用描點法畫出二次函數(shù)的圖象,總結(jié)規(guī)律,會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸。說出a為何值時y隨x增大而增大(增大而減小),引導學生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行梳理,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學生的化歸遷移的數(shù)學思維,培養(yǎng)學生的轉(zhuǎn)化能力。
(二)通過對二次函數(shù)圖像及其性質(zhì)的學習,采用學生思考,教師分析,解題小結(jié)三個環(huán)節(jié)構(gòu)成的練習題講解模式,鞏固二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。
(三)反思概括,方法總結(jié)。
總結(jié)本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學思想方法,學會用化歸思想,解決實際問題。培養(yǎng)學生由題及法,由法及類的數(shù)學總結(jié)歸納方法。
(四)作業(yè)。
課后通過練習來鞏固本節(jié)課所復習的知識點、重點和難點,強化教學目標。
各位老師,以上所說只是我預設(shè)的一種方案,但課堂上是千變?nèi)f化的,會隨著學生和教師的靈性發(fā)揮而隨機生成的,預設(shè)效果如何,最終還有待于課堂教學實踐的檢驗。本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
二次函數(shù)與冪函數(shù)教案篇十三
本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學生已學習了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的學習,是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎(chǔ)。
本節(jié)課中的教學重點利用描點法畫出二次函數(shù)的圖像,建構(gòu)符合學生認知結(jié)構(gòu)的知識體系,教學難點是運用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點坐標。基于以上對教材的認識,根據(jù)數(shù)學課程標準,考慮到學生已有的認知結(jié)構(gòu)與心理特征,制定如下的教學目標。
2.說目標。
二次函數(shù)與冪函數(shù)教案篇十四
根據(jù)我們學校人人皆知的船模特色項目設(shè)計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學生在練習中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
二次函數(shù)與冪函數(shù)教案篇十五
1.教學案例、教學設(shè)計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設(shè)計)是事先設(shè)想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學案例必須從教學任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
二次函數(shù)與冪函數(shù)教案篇十六
在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。
一、重視每一堂復習課數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
將本文的word文檔下載到電腦,方便收藏和打印。
二次函數(shù)與冪函數(shù)教案篇十七
1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。
2.注意培養(yǎng)學生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學生思考:
(1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)。
(2)如何判斷y=x2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。
二次函數(shù)與冪函數(shù)教案篇十八
一、教材分析:
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
本節(jié)教學時間安排1課時。
二、教學目標:
知識技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。
2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學重點、難點:
教學重點:
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學難點:
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
四、教學方法:啟發(fā)引導合作交流。
五:教具、學具:課件。
六、教學過程:
[活動1]檢查預習引出課題。
預習作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
教師重點關(guān)注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。
[活動2]創(chuàng)設(shè)情境探究新知。
問題。
1.課本p94問題.
3.結(jié)合預習題1,完成課本p94觀察中的題目。
師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。
教師重點關(guān)注:
1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。
2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。
3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
設(shè)計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設(shè)熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關(guān)系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。
[活動3]例題學習鞏固提高。
問題。
例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。
教師關(guān)注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
設(shè)計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習反饋鞏固新知。
二次函數(shù)與冪函數(shù)教案篇十九
二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
三、教師在設(shè)計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
【本文地址:http://www.aiweibaby.com/zuowen/16870006.html】