教案的編寫需要結合教學目標,確保學習內容的有序展開。教案的編寫應注重學生的參與和互動,培養(yǎng)學生的合作精神和創(chuàng)新能力。以下是小編為大家收集的教案范例,供教師們參考和借鑒。
導函數(shù)教案篇一
2、結合一次函數(shù)的圖像,掌握一次函數(shù)及其圖像的簡單性質。
過程與方法目標
1、經(jīng)歷對一次函數(shù)性質的探索過程,增強學生數(shù)形結合的意識,培養(yǎng)學生識圖能力;
2、經(jīng)歷對一次函數(shù)性質的探索過程,培養(yǎng)學生的觀察力、語言表達能力。
情感與態(tài)度目標
經(jīng)歷一次函數(shù)及性質的探索過程,在合作與交流活動中發(fā)展學生的合作意識和能力。
本節(jié)通過對一次函數(shù)圖像的研究,對一次函數(shù)的單調性作了探討;對一次函數(shù)的幾何意義也有涉及。在教學中要結合學生的認識情況,循序漸進,逐層深入,對教材內容可作適當增加,但不宜太難。
教學重點:結合一次函數(shù)的圖像,研究一次函數(shù)的簡單性質。
教學難點:一次函數(shù)性質的應用。
學生已經(jīng)對一次函數(shù)的圖像有了一定的認識,在此基礎上,結合一次函數(shù)的圖像,通過問題的設計,引導學生探討一次函數(shù)的簡單性質,學生是較容易掌握的。
(一)做一做
在同一直角坐標系內分別作出一次函數(shù)y=2x+6,y=2x1,y=x+6,y=5x的圖象。
(二)議一議
上述四個函數(shù)中,隨著x值的增大,y的值分別如何變化?
學生:有的在增大,有的在減小。
學生討論:y=2x+6和y=5x這兩個一次函數(shù)在增大;y=2x1和y=x+6在減??;影響這個變化的是x前面的系數(shù)k的符號:當k為正數(shù)時,y隨x的增大而增大;當k為負數(shù)時,y隨x的增大而減小。
師:當k0時,一次函數(shù)的圖象經(jīng)過哪些象限?
當k0時,一次函數(shù)的圖象經(jīng)過哪些象限?
導函數(shù)教案篇二
1.掌握對數(shù)函數(shù)的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質去研究認識對數(shù)函數(shù)的性質,初步學會用對數(shù)函數(shù)的性質解決簡單的問題。
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉化的觀點,通過對數(shù)函數(shù)圖象和性質的學習,滲透數(shù)形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數(shù)學的積極性。
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的。故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎。
(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質。難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點。
(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點。
(1)對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
(2)在本節(jié)課中結合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
導函數(shù)教案篇三
2、能較熟練地運用指數(shù)函數(shù)的性質解決指數(shù)函數(shù)的平移問題。
一、情境創(chuàng)設。
二、數(shù)學應用與建構。
例1、解不等式:
小結:解關于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質的運用,關鍵是底數(shù)所在的范圍。
例2、說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關系,并畫出它們的示意圖。
小結:指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移,y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移)。
練習:
(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)x的圖象。
(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)y的圖象。
(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是()。
(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是(),函數(shù)y=a2x—1的圖象恒過的定點的坐標是()。
小結:指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調性相結合,就可以構造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口。
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x—1|的圖象?
小結:函數(shù)圖象的.對稱變換規(guī)律。
例3、已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1—2x,試畫出此函數(shù)的圖象。
例4、求函數(shù)的最小值以及取得最小值時的x值。
小結:復合函數(shù)常常需要換元來求解其最值。
練習:
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于();
(2)函數(shù)y=2x的值域為();
(4)當x0時,函數(shù)f(x)=(a2—1)x的值總大于1,求實數(shù)a的取值范圍。
3、指數(shù)型函數(shù)的草圖及其變換規(guī)律。
課本p55—6、7。
(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x)的定義域為?
(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較函數(shù)的大小。
導函數(shù)教案篇四
(3)能正確使用“區(qū)間”及相關符號,能正確求解各類的定義域.。
2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.。
(1)對記號有正確的理解,準確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
(2)在求定義域中注意運算的合理性與簡潔性.。
3.通過定義由變量觀點向映射觀點的過渡,是學生能從發(fā)展的角度看待數(shù)學的學習.。
1.教材分析。
(1)知識結構。
(2)重點難點分析。
是的定義和符號的認識與使用.。
2.教法建議。
導函數(shù)教案篇五
我們前面學習了指數(shù)運算,在此基礎上,今天我們要來研究一類新的常見函數(shù)-------.
1.6.(板書)。
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的問題:。
由學生回答:與之間的關系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關系.
由學生回答:.
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為.
一.的概念(板書)。
1.定義:形如的函數(shù)稱為.(板書)教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內相應的函數(shù)值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定且.
(2)關于的定義域(板書)。
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實當指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的性質和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為.擴充的另一個原因是因為使她它更具代表更有應用價值.
(3)關于是否是的判斷(板書)。
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是.
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象.
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質.
3.歸納性質。
作圖的用什么方法.用列表描點發(fā)現(xiàn),教師準備明確性質,再由學生回答.
函數(shù)。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4.截距:在軸上沒有,在軸上為1.
對于性質1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應會證明.對于單調性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
在此基礎上,教師可指導學生列表,描點了.取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數(shù)不能太少.
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù).連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(板書)。
1.圖象的畫法:性質指導下的列表描點法.
2.草圖:。
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件.讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學生是否需要再畫.(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質,即從代數(shù)角度的描述,將表中另一部分填滿.
填好后,讓學生仿照此例再列一個的表,將相應的內容填好.為進一步整理性質,教師可提出從另一個角度來分類,整理函數(shù)的性質.
3.性質.
(1)無論為何值,都有定義域為,值域為,都過點.
(2)時,在定義域內為增函數(shù),時,為減函數(shù).
(3)時,,時,.
總結之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質.
三.簡單應用(板書)。
1.利用單調性比大小.(板書)。
一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;(3)與1.(板書)。
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數(shù),且.(板書)教師最后再強調過程必須寫清三句話:。
(1)構造函數(shù)并指明函數(shù)的單調區(qū)間及相應的單調性.
(2)自變量的大小比較.
(3)函數(shù)值的大小比較.
后兩個題的過程略.要求學生仿照第(1)題敘述過程.
例2.比較下列各組數(shù)的大小(1)與;(2)與;(3)與.(板書)。
先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導學生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決.(教師可提示學生的函數(shù)值與1有關,可以用1來起橋梁作用)。
最后由學生說出1,1,.
解決后由教師小結比較大小的方法。
(1)構造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0.
導函數(shù)教案篇六
學習目標:
1、能夠分析和表示變量間的二次函數(shù)關系,并解決用二次函數(shù)所表示的問題。
2、用三種方式表示變量間二次函數(shù)關系,從不同側面對函數(shù)性質進行研究。
3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學生的運用能力。
學習重點:
能夠分析和表示變量之間的二次函數(shù)關系,并解決用二次函數(shù)所表示的問題。
能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側面對函數(shù)性質進行研究。
學習難點:
能夠分析和表示變量之間的二次函數(shù)關系,并解決用二次函數(shù)所表示的問題。
學習過程:
一、學前準備。
函數(shù)的三種表示方式,即表格、表達式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價與購買數(shù)量之間的關系如下:
x(千克)00。511。522。53。
y(元)0123456。
二、探究活動。
(一)合作探究:
交流完成:
(1)一邊長為xcm,則另一邊長為cm,所以面積為:用函數(shù)表達式表示:=________________________________。
(2)表格表示:
123456789。
10—。
(3)畫出圖象。
(二)議一議。
(1)在上述問題中,自變量x的取值范圍是什么?
(2)當x取何值時,長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。
點撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請大家互相交流。
(1)因為x是邊長,所以x應取數(shù),即x0,又另一邊長(10—x)也應大于,即10—x0,所以x10,這兩個條件應該同時滿足,所以x的取值范圍是。
(2)當x取何值時,長方形的面積最大,就是求自變量取何值時,函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點式。當x=—時,函數(shù)y有最大值y最大=。當x=時,長方形的面積最大,最大面積是25cm2。
可以通過觀察圖象得知。也可以代入頂點坐標公式中求得。。
(三)做一做:學生獨立思考完成p62,p63的函數(shù)表達式,表格,圖象問題。
(1)用函數(shù)表達式表示:y=________。
(2)用表格表示:
(3)用圖象表示:
三、學習體會。
本節(jié)課你有哪些收獲?你還有哪些疑問?
四、自我測試。
1、把長1。6米的鐵絲圍成長方形abcd,設寬為x(m),面積為y(m2)。則當最大時,所取的值是()。
a0。5b0。4c0。3d0。6。
2、兩個數(shù)的和為6,這兩個數(shù)的積最大可能達到多少?利用圖象描述乘積與因數(shù)之間的關系。
導函數(shù)教案篇七
尊敬的評委老師,大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。
總結語。
為了更好的呈現(xiàn)我的教學思路,我將以教什么、怎么教以及為什么這么教為思路,具體從教材分析、教學目標分析、學情分析、教法、學法以及教學過程等幾個方面展開我的說課。
教材分析。
教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學必修一第二章第六節(jié)。在漫長的高中數(shù)學學習的過程中,函數(shù)的學習貫穿始終。從教材的書寫邏輯上看,之前的教材內容已經(jīng)對于函數(shù)的一般性質進行了排布。而本節(jié)課指數(shù)函數(shù)的學習則對接下來對數(shù)函數(shù)等復雜函數(shù)的深入學習奠定了堅實的基礎??梢哉f,指數(shù)函數(shù)的學習對于高中函數(shù)的學習起到了承上啟下的重要作用。
學情分析。
新的學生觀告訴我們,我們要在課堂中充分發(fā)揮學生的主體地位,因此對于學生的情況了解也是十分重要的。從思維層面上看,高中的學生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學生好勝心比較強,容易產生負面情緒,這對于我們課堂的教學也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學習中,學生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學生的學習、老師的教授都提出了較高的要求,因此合理的教法學法選擇顯得尤為重要。
教學目標。
教學目標是教育教學活動的出發(fā)點和依據(jù),結合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學目標如下:
知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質;能夠利用指數(shù)函數(shù)的概念解決實際問題。
過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標:通過教學互動,促進師生情感,激發(fā)學生的學習興趣,提高學生的抽象概括,分析,綜合的能力,培養(yǎng)學生聯(lián)系觀點看問題,領會數(shù)學科學的應用價值。
而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質,以及它與底數(shù)a的關系。
正如蘇霍姆林斯基所說:只有能夠激發(fā)學生去進行自我教育的教育,才是真正的教育。在滿足學習者需求的基礎之上,我將制定適合本階段學生的教法來展開教學,以體現(xiàn)教師的主導性。分別以圖片展示、討論、講授、參與練習等相結合的方式進行教學。同時我將采用誘思探究和自主學習相結合的方式,以激發(fā)學生的學習主動性,充分地體現(xiàn)學生的主體地位。
教學過程。
以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學過程的設計。
首先創(chuàng)設情境,導入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關系以及細胞個數(shù)y與分裂次數(shù)x的關系,用所學知識結合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學生的學習興趣,培養(yǎng)學生思維的主動性,為接下來的學習做好準備。
其次啟發(fā)誘導,探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質。同學們通過動手,促進學生對本課內容的理解學習,并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結所學知識的性質,也能對于接下來的知識點導入起到自然結合的作用。當然學生通過我的引導交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質涉及方面,總結出它的性質。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關考古知識,本著實踐為主的原則,完成學生學習:實踐到認識再到實踐的過程。通過練習實現(xiàn)教師的再指導和學生的漸進式提高。這個環(huán)節(jié)介紹的化學知識在考古中的應用,這樣的設計既開拓了學生的視野,又為下一步學習:計算分期付款的利率等問題埋下伏筆,因此學生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學的應用價值。緊接著我會帶領學生進行歸納,總結升華我會將同學們進行分組討論、探究,引導學生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設置分組pk機制,引導學生對課堂知識進行分類討論、數(shù)形結合等數(shù)學方法的歸納。最后我會布置課后作業(yè)以幫助學生鞏固練習,溫故而知新。
板書設計。
當然一堂完整的課程離不開簡潔明了的板書設計,我的板書設計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習過程中寫下今天練習的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設計,可以幫助學生更好地學習本課的內容。以上就是我所有的授課內容,感謝各位老師的聆聽。
導函數(shù)教案篇八
尊敬的評委老師,大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。
教材分析。
教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學必修一第二章第六節(jié)。在漫長的高中數(shù)學學習的過程中,函數(shù)的學習貫穿始終。從教材的書寫邏輯上看,之前的教材內容已經(jīng)對于函數(shù)的一般性質進行了排布。而本節(jié)課指數(shù)函數(shù)的學習則對接下來對數(shù)函數(shù)等復雜函數(shù)的深入學習奠定了堅實的基礎??梢哉f,指數(shù)函數(shù)的學習對于高中函數(shù)的學習起到了承上啟下的重要作用。
學情分析。
新的學生觀告訴我們,我們要在課堂中充分發(fā)揮學生的主體地位,因此對于學生的情況了解也是十分重要的。從思維層面上看,高中的學生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的'理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學生好勝心比較強,容易產生負面情緒,這對于我們課堂的教學也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學習中,學生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學生的學習、老師的教授都提出了較高的要求,因此合理的教法學法選擇顯得尤為重要。
教學目標。
教學目標是教育教學活動的出發(fā)點和依據(jù),結合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學目標如下:
知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質;能夠利用指數(shù)函數(shù)的概念解決實際問題。
過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標:通過教學互動,促進師生情感,激發(fā)學生的學習興趣,提高學生的抽象概括,分析,綜合的能力,培養(yǎng)學生聯(lián)系觀點看問題,領會數(shù)學科學的應用價值。
而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質,以及它與底數(shù)a的關系。
正如蘇霍姆林斯基所說:只有能夠激發(fā)學生去進行自我教育的教育,才是真正的教育。在滿足學習者需求的基礎之上,我將制定適合本階段學生的教法來展開教學,以體現(xiàn)教師的主導性。分別以圖片展示、討論、講授、參與練習等相結合的方式進行教學。同時我將采用誘思探究和自主學習相結合的方式,以激發(fā)學生的學習主動性,充分地體現(xiàn)學生的主體地位。
教學過程。
以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學過程的設計。
首先創(chuàng)設情境,導入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關系以及細胞個數(shù)y與分裂次數(shù)x的關系,用所學知識結合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學生的學習興趣,培養(yǎng)學生思維的主動性,為接下來的學習做好準備。
其次啟發(fā)誘導,探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質。同學們通過動手,促進學生對本課內容的理解學習,并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結所學知識的性質,也能對于接下來的知識點導入起到自然結合的作用。當然學生通過我的引導交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質涉及方面,總結出它的性質。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關考古知識,本著實踐為主的原則,完成學生學習:實踐到認識再到實踐的過程。通過練習實現(xiàn)教師的再指導和學生的漸進式提高。這個環(huán)節(jié)介紹的化學知識在考古中的應用,這樣的設計既開拓了學生的視野,又為下一步學習:計算分期付款的利率等問題埋下伏筆,因此學生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學的應用價值。緊接著我會帶領學生進行歸納,總結升華我會將同學們進行分組討論、探究,引導學生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設置分組pk機制,引導學生對課堂知識進行分類討論、數(shù)形結合等數(shù)學方法的歸納。最后我會布置課后作業(yè)以幫助學生鞏固練習,溫故而知新。
板書設計。
當然一堂完整的課程離不開簡潔明了的板書設計,我的板書設計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習過程中寫下今天練習的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設計,可以幫助學生更好地學習本課的內容。以上就是我所有的授課內容,感謝各位老師的聆聽。
導函數(shù)教案篇九
啟發(fā)研討式。
投影儀。
教學過程。
一、引入新課。
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學生說出是指數(shù)函數(shù),它是存在反函數(shù)的、并由一個學生口答求反函數(shù)的過程:
由得、又的值域為,所求反函數(shù)為、
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)對數(shù)函數(shù)、
1、作圖方法。
具體操作時,要求學生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等)、
(2)畫出直線、
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出和的.圖像、(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內)如圖:
2、草圖。
教師畫完圖后再利用投影儀將和的圖像畫在同一坐標系內,如圖:
然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(要求從幾何與代數(shù)兩個角度說明)。
3、性質。
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側、
(3)截距:令得,即在軸上的截距為1,與軸無交點即以軸為漸近線、
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于軸對稱、
(5)單調性:與有關、當時,在上是增函數(shù)、即圖像是上升的。
當時,在上是減函數(shù),即圖像是下降的、
之后可以追問學生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:
當時,有;當時,有、
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖、且應將其性質與指數(shù)函數(shù)的性質對比記憶、(特別強調它們單調性的一致性)。
對圖像和性質有了一定的了解后,一起來看看它們的應用、
三、鞏固練習。
練習:若,求的取值范圍、
四、小結五、作業(yè)略。
導函數(shù)教案篇十
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標決定,即角的終邊過點。
8、時,。
9、。
其中為內切圓半徑,為外接圓半徑。
特別地:直角中,設c為斜邊,則內切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設,。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
導函數(shù)教案篇十一
2.通過對抽象符號的認識與使用,使學生在符號表示方面的能力得以提高.。
難點:重點是在映射的基礎上理解的概念;
難點是對抽象符號的認識與使用.。
投影儀。
自學研究與啟發(fā)討論式.。
(要求學生盡量用自己的話描述初中的定義,并試舉出各類學過的例子)。
提問1.是嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做.)。
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關的內容,再回答我的問題.(約2-3分鐘或開始提問)。
提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。
(板書)2.2。
一、的概念。
問題3:映射與有何關系?(一定是映射嗎?映射一定是嗎?)。
引導學生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。
2.本質:是非空數(shù)集到非空數(shù)集的映射.(板書)。
然后讓學生試回答剛才關于是不是的問題,要求從映射的角度解釋.。
此時學生可以清楚的看到滿足映射觀點下的定義,故是一個,這樣解釋就很自然.。
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個?
從映射角度看可以是其中定義域是,值域是.。
3.的三要素及其作用(板書)。
例1以下關系式表示嗎?為什么?
(1);(2).。
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。
(2)由有意義得,解得.定義域為,值域為.。
由以上兩題可以看出三要素的作用。
(1)判斷一個關系是否存在.(板書)。
例2下列各中,哪一個與是同一個.。
(1);(2)(3);(4).。
解:先認清,它是(定義域)到(值域)的映射,其中。
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.。
(2)判斷兩個是否相同.(板書)。
4.對符號的理解(板書)。
例3已知試求(板書)。
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.。
含義1:當自變量取3時,對應的值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應表示原象的象,即.。
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。
1.的定義。
2.對三要素的認識。
3.對符號的認識。
五、
2.2例1.例3.。
一.的概念。
1.定義。
2.本質例2.小結:
3.三要素的認識及作用。
4.對符號的理解。
探究活動。
答案:
導函數(shù)教案篇十二
難點:其一般的性質分析,再由性質得到一般圖像。
三.教學方法和用具。
方法:歸納總結,數(shù)形結合,分析驗證。
用具:幻燈片,幾何畫板,黑板。
四.教學過程。
(幻燈片見附件)。
1.設置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質的表格,并分析得出更一般的結論(板書)(幾何畫板)。
導函數(shù)教案篇十三
(二)解析:本節(jié)課要學的內容指的是會判定函數(shù)在某個區(qū)間上的單調性、會確定函數(shù)的單調區(qū)間、能證明函數(shù)的單調性,其關鍵是利用形式化的定義處理有關的單調性問題,理解它關鍵就是要學會轉換式子。學生已經(jīng)掌握了函數(shù)單調性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內容就是在此基礎上的應用。教學的重點是應用定義證明函數(shù)在某個區(qū)間上的單調性,解決重點的關鍵是嚴格按過程進行證明。
二、教學目標及解析。
(一)教學目標:
掌握用定義證明函數(shù)單調性的步驟,會求函數(shù)的單調區(qū)間,提高應用知識解決問題的能力。
(二)解析:
會證明就是指會利用三步曲證明函數(shù)的單調性;會求函數(shù)的單調區(qū)間就是指會利用函數(shù)的圖象寫出單調增區(qū)間或減區(qū)間;應用知識解決問題就是指能利用函數(shù)單調性的意義去求參變量的取值情況或轉化成熟悉的問題。
三、問題診斷分析。
在本節(jié)課的教學中,學生可能遇到的問題是如何才能準確確定的符號,產生這一問題的原因是學生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學生的實際情況進行知識補習,特別是因式分解、二次根式中的分母有理化的補習。
在本節(jié)課的教學中,準備使用(),因為使用(),有利于()。
導函數(shù)教案篇十四
通過對這節(jié)課的教學研究,我深刻地認識到新課程背景下的數(shù)學課堂教學應注意:
1、教師要“放得開”,做一個邊緣人。我們應該充分相信學生,給學生成長的機會和空間。不再搞“包辦代替”,不能急性子。凡是學生能做的,就應該讓他們自主去做;凡是學生之間能合作完成的,就應該讓他們自主探究。給學生一滴水的機會,也許他會收獲一片海洋。
2、要做到“問題引領”,用問題牽引學習。本節(jié)課的設計給予學生的基礎,設計了多個學生容易解決的問題串,這樣,能夠在循序漸進中學到知識。
3、要創(chuàng)造性地使用教材。教學過程中,不應局限于教材,而應充分利用教材這個平臺,伸向與教材有關的領域。數(shù)學是思維的體操,因此,若能對數(shù)學教材科學安排,對問題妙引導,有意識地引導學生有意識地主動學習更多更全面的數(shù)學知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結規(guī)律。
4、注重探究,體驗知識的形成過程。數(shù)學教學從本質上講,是教師和學生以課堂為主渠道的交流活動,是教師和學生在某種教學情境中的探究活動。這節(jié)課教師本著“讓學生充分經(jīng)歷知識的形成、發(fā)展和應用過程,充分體驗數(shù)學的發(fā)現(xiàn)和創(chuàng)造歷程”的教學理念,對教學過程和教學手段作了充分的準備。整節(jié)課學生在教師的引導下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學學習的樂趣,教師的主導作用和學生的主體地位都得到了很好地體現(xiàn)。
總之,我們的教學工作是一項內涵豐富的系統(tǒng)工程。教學中用問題引領學生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復雜的課題?!氨鶅鋈?,非一日之寒”,在教學中必須循序漸進,長期實踐,與時俱進,爭取做教學改革的有心人,只有這樣才能在教學研究工作中有所作為。因此,在實際教學中,我們應時刻以學生為中心,充分給予學生成長的時間,鼓勵學生自主探究,采用適時激勵與點撥的方法使學生的思維活躍起來,讓課堂真正成為學生學習、發(fā)現(xiàn)的樂園。
導函數(shù)教案篇十五
我本節(jié)課說課的內容是高中數(shù)學第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質。我將嘗試運用新課標的理念指導本節(jié)課的教學。新課標指出,學生是教學的主體,教師的教要應本著從學生的認知規(guī)律出發(fā),以學生活動為主線,在原有知識的基礎上,建構新的知識體系。我將以此為基礎從教材分析,教學目標分析,教法學法分析和教學過程分析這幾個方面加以說明。
一、教材分析。
1、教材的地位和作用:函數(shù)是高中數(shù)學學習的重點和難點,函數(shù)的貫穿于整個高中數(shù)學之中。本節(jié)課是學生在已掌握了函數(shù)的一般性質和簡單的指數(shù)運算的基礎上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質,同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質打下堅實的基礎。因此,本節(jié)課的內容十分重要,它對知識起到了承上啟下的作用。
2、教學的重點和難點:根據(jù)這一節(jié)課的內容特點以及學生的實際情況,我將本節(jié)課教學重點定為指數(shù)函數(shù)的圖像、性質及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關系。
二、教學目標分析。
基于對教材的理解和分析,我制定了以下的教學目標。
3、情感目標(可持續(xù)性目標):通過學習,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生勇于提問,善于探索的思維品質。
三、教法學法分析。
1、教學策略:首先從實際問題出發(fā),激發(fā)學生的學習興趣。第二步,學生歸納指數(shù)的圖像和性質。第三步,典型例題分析,加深學生對指數(shù)函數(shù)的理解。
2、教學:貫徹引導發(fā)現(xiàn)式教學原則,在教學中既注重知識的直觀素材和背景材料,又要激活相關知識和引導學生思考、探究、創(chuàng)設有趣的問題。
3、教法分析:根據(jù)教學內容和學生的狀況,本節(jié)課我采用引導發(fā)現(xiàn)式的教學方法并充分利用多媒體輔助教學。
導函數(shù)教案篇十六
1、初步掌握函數(shù)概念,能判斷兩個變量間的關系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
過程與方法。
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
一、創(chuàng)設問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
導函數(shù)教案篇十七
(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)
提問1.是函數(shù)嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關的內容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數(shù)
一、函數(shù)的概念
問題3:映射與函數(shù)有何關系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質:函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關于是不是函數(shù)的問題,要求從映射的角度解釋.
此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書)
以下關系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數(shù)是否相同.(板書)
4.對函數(shù)符號的理解(板書)
已知函數(shù)試求(板書)
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量取3時,對應的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應表示原象的象,即.
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
三、小結
1.函數(shù)的定義
2.對函數(shù)三要素的認識
3.對函數(shù)符號的認識
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質例2.小結:
3.函數(shù)三要素的認識及作用
4.對函數(shù)符號的理解
答案:
導函數(shù)教案篇十八
(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究.
(2)本節(jié)的教學重點是在理解定義的基礎上掌握的圖象和性質.難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議。
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
導函數(shù)教案篇十九
1.使學生掌握的概念,圖象和性質.
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質.
(3)能利用的性質比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結合的思想方法.
3.通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.
【本文地址:http://www.aiweibaby.com/zuowen/17300443.html】