必修一數(shù)學(xué)教案范文(22篇)

格式:DOC 上傳日期:2023-12-05 04:48:18
必修一數(shù)學(xué)教案范文(22篇)
時間:2023-12-05 04:48:18     小編:夢幻泡

教案是教師根據(jù)教學(xué)內(nèi)容和教學(xué)目標(biāo)編寫的一種具體指導(dǎo)教學(xué)的工具。教案的編寫要遵循教學(xué)原則和教育規(guī)律,使教學(xué)更加有針對性和有效性。接下來是一些精選的教案范文,供大家互相借鑒和學(xué)習(xí)。

必修一數(shù)學(xué)教案篇一

本節(jié)課力的合成,是在學(xué)生了解力的基本性質(zhì)和常見幾種力的基礎(chǔ)上,通過等效替代思想,研究多個力的合成方法,是對前幾節(jié)內(nèi)容的深化。

本節(jié)重點介紹力的合成法則——平行四邊形定則,但實際這是所有矢量運算的共同工具,為學(xué)習(xí)其他矢量的運算奠定了基礎(chǔ)。

更重要的是,力的合成是解決力學(xué)問題的基礎(chǔ),對今后牛頓運動定律、平衡問題、動量與能量問題的理解和應(yīng)用都會產(chǎn)生重要影響。

因此,這節(jié)課承前啟后,在整個高中物理學(xué)習(xí)中占據(jù)著非常重要的地位。

二、教學(xué)目標(biāo)定位。

為了讓學(xué)生充分進行實驗探究,體驗獲取知識的過程,本節(jié)內(nèi)容分兩課時來完成,今天我說課的內(nèi)容為本節(jié)內(nèi)容的第一課時。根據(jù)上述教材分析,考慮到學(xué)生的實際情況,在本節(jié)課的教學(xué)過程中,我制定了如下教學(xué)目標(biāo):。

一、知識與技能。

理解合力、分力、力的合成的概念理解力的合成本質(zhì)上是從等效的角度進行力的替代。

探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。

二、過程與方法。

通過學(xué)習(xí)合力和分力的概念,了解物理學(xué)常用的方法——等效替代法。

通過實驗探究方案的設(shè)計與實施,體驗科學(xué)探究的過程。

三、情感態(tài)度與價值觀。

培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生學(xué)習(xí)興趣,形成良好的學(xué)習(xí)方法和習(xí)慣。

培養(yǎng)認(rèn)真細(xì)致、實事求是的實驗態(tài)度。

根據(jù)以上分析確定本節(jié)課的重點與難點如下:

一、重點。

合力和分力的概念以及它們的關(guān)系。

實驗探究力的合成所遵循的法則。

二、難點。

平行四邊形定則的理解和運用。

三、重、難點突破方法——教法簡介。

本堂課的重、難點為實驗探究力的合成所遵循的法則——平行四邊形定則,為了實現(xiàn)重難點的突破,讓學(xué)生真正理解平行四邊形定則,就要讓學(xué)生親自體驗規(guī)律獲得的過程。

因此,本堂課在學(xué)法上采用學(xué)生自主探究的實驗歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學(xué)生親自去體驗、探究、歸納總結(jié)。體現(xiàn)學(xué)生主體性。

實驗歸納法的步驟如下。這樣設(shè)計讓學(xué)生不僅能知其然,更能知其所以然,這也是本堂課突破重點和難點的重要手段。

本堂課在教法上采用啟發(fā)式教學(xué)——通過設(shè)置問題,引導(dǎo)啟發(fā)學(xué)生,激發(fā)學(xué)生思維。體現(xiàn)教師主導(dǎo)作用。

四、教學(xué)過程設(shè)計。

采用六環(huán)節(jié)教學(xué)法,教學(xué)過程共有六個步驟。

教學(xué)過程第一環(huán)節(jié)、創(chuàng)設(shè)情景導(dǎo)入新課:

第二環(huán)節(jié)、新課教學(xué):

展示合力與分力以及力的合成的概念,強調(diào)等效替代法。舉例說明等效替代法是一種重要的物理方法。

第三環(huán)節(jié)、合作探究:

首先,教師展示實驗儀器,讓學(xué)生思考如何設(shè)計實驗,,如何進行實驗?zāi)?學(xué)生面對器材可能會覺得無從下手。再次設(shè)置問題引導(dǎo)學(xué)生思維,讓學(xué)生面對儀器分組討論以下四個問題。

問題1要用動畫輔助說明。在問題2中,教師要強調(diào)結(jié)點的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學(xué)生注意測力計的使用,減小實驗誤差。通過對這四個問題的討論,再結(jié)合多媒體動畫的展示,使學(xué)生對探究的步驟清晰明了。

然后,學(xué)生分組實驗,合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實驗完成后請學(xué)生展示實驗結(jié)果,應(yīng)該立即可得出結(jié)論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數(shù)方法相加減.

那合力與分力到底滿足什么關(guān)系呢?

此時要引導(dǎo)學(xué)生思考:既然從數(shù)字上找不到關(guān)系,哪可不可以從幾何上找找關(guān)系呢?學(xué)生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點,ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實踐才有發(fā)言權(quán),學(xué)生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。

學(xué)生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實驗的誤差是不可避免的,科學(xué)家經(jīng)過很多次的、精細(xì)的實驗,最后確認(rèn)對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結(jié)論二:力的合成法則——平行四邊形定則。

進入。

第四環(huán)節(jié):歸納總結(jié)。

將本文的word文檔下載到電腦,方便收藏和打印。

必修一數(shù)學(xué)教案篇二

1、了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實和判定的基本方法。

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

(2)能從數(shù)和形兩個角度熟悉單調(diào)性和奇偶性。

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。

2、通過函數(shù)單調(diào)性的證實,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想。

3、通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。

必修一數(shù)學(xué)教案篇三

掌握三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.

教學(xué)重難點。

利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

將本文的word文檔下載到電腦,方便收藏和打印。

必修一數(shù)學(xué)教案篇四

1. 閱讀課本 練習(xí)止.

2. 回答問題

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習(xí)

4. 小結(jié).

二、方法指導(dǎo)

1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域為 .

1.對數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).

3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.

必修一數(shù)學(xué)教案篇五

人教版語文必修1-5冊通假字(人教版高二必修)。

1今老矣,無能為也已矣。

2行李之往來,共其乏困供。

3夫晉,何厭之有饜。

4秦伯說,與鄭人盟悅。

5失之所與,不知智。

6秦王必h見臣悅。

7今日往而不反者,豎子也返。

8燕王誠振怖大王之威震。

9秦王還柱而走環(huán)。

10群臣驚愕,卒起不意,盡失其度猝。

11距關(guān),毋內(nèi)諸侯,拒納。

12張良出,要項伯邀。

13愿伯具言臣之不敢倍德也背。

14旦日不可不蚤自來謝項王早。

15令將軍與臣有s隙。

16因擊沛公于坐座。

17匪來貿(mào)絲,來即我謀非。

18于嗟鳩兮,無食桑葚吁。

19士之耽兮,猶可說也脫。

20淇則有岸,隰則有泮畔。

21涼婢囟改錯措。

22饔粢賾髻奄郁悒。

23何方圜之能周兮圓。

24進不入以離尤兮罹。

25芳菲菲其彌章彰。

26箱簾六七十奩。

27蒲葦紉如絲韌。

28契闊談宴。

29取諸懷抱,悟言一室之內(nèi)晤。

30馮虛御風(fēng)憑。

31長樂王回深父甫。

32所守或匪親非。

33則無望民之多于鄰國也毋。

34無失其時毋。

35頒白者不負(fù)戴于道路矣斑。

36涂有餓莩而不知發(fā)途。

37以為輪。

38雖有槁暴又。

39合從締交,相與為一縱。

40師者,所以傳道受業(yè)解惑也授。

41或師焉,或不焉否。

42一尊還酹江月樽。

43秦王以十五城請易寡人之璧,可予不否。

44拜送書于庭廷。

45召有司案圖按。

46秦自公以來二十余君穆。

47唯大王與群臣孰計議之熟。

48畔主背親叛。

49與旃毛并咽之氈。

50掘野鼠去草食而食之l。

51空自苦亡人之地?zé)o。

52信義安所見乎現(xiàn)。

53王必欲降武,請畢今日之o歡。

54因泣下衿,與武決去訣。

55乃瞻衡宇橫。

56景翳翳以將入影。

57儼驂w于上路嚴(yán)。

58云銷雨霽消。

59北冥有魚溟。

60小知不及大知,小年不及大年智。

61湯之問棘也是已矣。

62此小大之辯也辨。

63德合一君,而征一國者耐。

64御六氣之辯變。

65臣以險釁,夙遭閔兇憫。

66零丁孤苦,至于成立伶仃。

67常在床蓐,臣侍湯藥褥。

68祖母今年九十有六又。

必修一數(shù)學(xué)教案篇六

3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.

教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運用.

實物投影儀,多媒體軟件,電腦.

研探式.

一.復(fù)習(xí)提問

等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.

二.主體設(shè)計

通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

1.方程思想的運用

(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.

(2)已知等差數(shù)列中,首項,則公差

(3)已知等差數(shù)列中,公差,則首項

這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出

3.研究等差數(shù)列的單調(diào)性

4.研究項的符號

這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如

(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?

(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).

三.小結(jié)

1.用方程思想熟悉等差數(shù)列通項公式;

2.用函數(shù)思想解決等差數(shù)列問題.

四.板書設(shè)計

等差數(shù)列通項公式1.方程思想的運用

2.基本量方法的使用

3.研究等差數(shù)列的單調(diào)性

4.研究項的符號

必修一數(shù)學(xué)教案篇七

1、基本概念:

(1)必然事件:在條件s下,一定會發(fā)生的事件,叫相對于條件s的必然事件;。

(2)不可能事件:在條件s下,一定不會發(fā)生的事件,叫相對于條件s的不可能事件;。

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件s的確定事件;。

(4)隨機事件:在條件s下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件s的隨機事件;。

(5)頻數(shù)與頻率:在相同的條件s下重復(fù)n次試驗,觀察某一事件a是否出現(xiàn),稱n次試驗中事件a出現(xiàn)的次數(shù)na為事件a出現(xiàn)的頻數(shù);對于給定的隨機事件a,如果隨著試驗次數(shù)的增加,事件a發(fā)生的頻率fn(a)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作p(a),稱為事件a的概率。

必修一數(shù)學(xué)教案篇八

1.把握寫景抒情散文情景交融的特點,提高對情景交融意境的鑒賞能力。

2.學(xué)習(xí)作者運用語言的技巧:比喻、通感的巧妙運用,動詞、疊詞的精心選用。

3.訓(xùn)練整體感知、揣摩語言的能力。

過程與方法。

1.本文語言精美,寫景狀物傳神,應(yīng)加強朗讀訓(xùn)練,讓學(xué)生自然地受到感染,體會文章的韻味。

2.理解關(guān)鍵語句,提高對作者在文中表達的思想感情的領(lǐng)悟能力。

情感態(tài)度與價值觀。

1.引導(dǎo)學(xué)生關(guān)注社會,追求理想。

2.培養(yǎng)學(xué)生健康的審美情趣。教學(xué)重點體味作品寫景語言精練、優(yōu)美的特點及其表達效果。教學(xué)難點品味、領(lǐng)悟課文情景交融,“景語”“情語”渾然一體的寫作特點。

教學(xué)方法誦讀法、感知法、品味法。

教具準(zhǔn)備課文錄音帶、多媒體課件。

教學(xué)時間安排二個課時。

第一課時。

一、導(dǎo)語設(shè)計。

李白在《月下獨酌》里說:“花間一壺酒,獨酌無相親。舉杯邀明月,對影成三人?!薄谶@里,“月”成了詩人排遣內(nèi)心深處孤獨寂寞的一種載體。

二、文本解讀。

(一)知識積累。

1、朱自清的生平和創(chuàng)作。朱自清,原名自華,字佩弦,號秋實。祖籍浙江紹興,1898年生于江蘇東海。1903年隨家定居揚州。1916年中學(xué)畢業(yè)后,考入北京大學(xué)預(yù)科班,次年更名“自清”,考入本科哲學(xué)系。畢業(yè)后在江蘇、浙江等地的中學(xué)任教。上大學(xué)時,朱自清開始創(chuàng)作新詩,1923年發(fā)表的長詩《毀滅》,震動了當(dāng)時的詩壇。1924年出版詩與散文集《蹤跡》,1925年任清華大學(xué)教授,創(chuàng)作轉(zhuǎn)向散文,同時開始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是詩人、散文家、學(xué)者,又是民主戰(zhàn)士、愛國知識分子。毛澤東稱他“表現(xiàn)了我們民族的英雄氣概”。著作有《朱自清全集》。

3、借助注解和詞典讀懂《采蓮賦》。

(二)信息篩選播放錄音(或教師朗讀)。

1、學(xué)生邊聽邊思考如何劃分層次,并歸納大意。

明確:全文分三部分:

第一部分(1):月夜漫步荷塘的緣由。(點明題旨)。

第二部分(2-6):荷塘月色的恬靜迷人。(主體)。

第三部分(7-10):荷塘月色的美景引動鄉(xiāng)思。(偏重抒情)。

(三)合作探究。

師生共同解析第四段,看作者是怎樣從多角度來描摹荷塘美景的?明確:先寫滿眼茂密的荷葉,次寫多姿多態(tài)的荷花、荷香,最后寫葉子和花的一絲顫動以及流水。層次井然,形象精確?!@是按觀察的角度,視線由近及遠、由上而下的空間順序來寫的。以上是順序特點,細(xì)分析,還可以看出作者的匠心:a.抓靜態(tài)與動態(tài)的結(jié)合,把荷塘寫“活”。而且,作者筆下的景物都是“動”的,“靜”不過是“動”的瞬間表現(xiàn),揚靜而情動。

b.抓可見與可想的結(jié)合,寫出了散文的神韻。所謂“可想”,是指由“可見”引起的合理聯(lián)想,把不可見的景物寫得很有風(fēng)采。

(四)能力提升。

學(xué)生自己閱讀第五段,合作討論作者在這里是如何描寫月色的。

明確:作者把荷葉和荷花放在月光下面,一個“瀉”字,給人一種乳白色而又鮮艷欲滴的實感;一個“浮”字又表現(xiàn)出月光下荷葉、荷花那種縹緲輕柔的姿容。文章似乎仍在寫荷葉、荷花,其實不然,作者是通過寫葉、花的安謐、恬靜,襯托出月色的朦朧柔和。又如文章寫“黑影”和“倩影”,也是寫月色,因為影是月光照射在物體上產(chǎn)生的。樹影明暗掩映,錯落有致,反襯月光輕盈蕩漾。月色本是難以描摹的',所以作者透過不同的景物,從不同的角度去寫月色,使難狀之景如在眼前。

(五)分析鑒賞。

1、第五段“酣眠”“小睡”各指什么?有無深層含義?

明確:“酣眠”比喻朗照,“小睡”比喻被一層淡淡的云遮住的月光。至于它的深層含義應(yīng)該聯(lián)系作者的心態(tài)來看,他不希望過于激烈的行為,他喜歡一種平和的心態(tài),正如我們前面分析的那樣,他做不到投筆從戎,他要尋找安寧平和的生活。對景物的喜好折射出作者的心態(tài)。

2、課文第五段,寫月光用“瀉”不用“照”“鋪”,其好處是什么?(解答這個問題,不妨請學(xué)生把“照”和“鋪”字代入句中讀一遍,學(xué)生就知道了。

明確:“瀉”是承上面比喻句“如流水一般”而來的,“瀉”字有向下傾的勢態(tài)。“照”字和“鋪”字就沒有這個效果。

3、作者為什么會由光和影聯(lián)想到名曲?

明確:這是使用通感的修辭手法,光與影是視覺形象,作者卻用聽覺形象來比喻,這就是通感的一種,其相似點就是和諧。第四段寫荷花的縷縷清香,微風(fēng)傳送,像遠方飄來歌聲一樣動人心懷,這幽雅淡遠的感受也只有在月夜獨處時才會有,這也是通感,把嗅覺形象轉(zhuǎn)化為聽覺形象,它們之間的相似點就是似有似無、時斷時續(xù)、捉摸不定。

三、課堂小結(jié)。

所謂“意境”,指的是外界的人事景物(客觀)與人的思想感情(主觀)相融合而形成的一種天人合一、情景交融的境界。這種天人合一、情景交融越是天衣無縫、水乳交融,散文就越具有美感。《荷塘月色》做到了這一點,所以它具有一種意境美。

四、作業(yè)設(shè)計。

背誦第四、五、六段。

第二課時。

一、導(dǎo)語設(shè)計。

二、文本解讀。

(一)合作探究指導(dǎo)學(xué)生理解“通感”的特點及其作用。明確:通感:就是人的各種感覺之間的交流、溝通、轉(zhuǎn)移。錢鐘書先生說過,“在日常經(jīng)驗里,視覺、聽覺、觸覺、嗅覺、味覺往往可以彼此打通或交通,眼、耳、舌、鼻、身,各個官能的領(lǐng)域可以不分界限。顏色似乎會有溫度,聲音似乎會有形象,冷暖似乎會有重量,氣味似乎會有鋒芒……”(《通感》。)例如:“微風(fēng)過處,送來縷縷清香,仿佛遠處高樓上渺茫的歌聲似的?!?/p>

a.本體——花香(嗅覺)喻體——渺茫的歌聲(聽覺)b.作用:把花香的特點寫清了,生動形象。

c.相似點:立于微風(fēng)中嗅馨香(時有時無)——聽遠處高樓傳來的歌聲(時斷時續(xù))再如:“但光與影有著和諧的旋律,如梵婀玲上奏著的名曲?!?/p>

(二)能力提升。

1、文章抒情的語句主要有哪些?

明確:第一段:這幾天心里頗不寧靜。

第二段:沒有月光的晚上,這路上陰森森的,有些怕人。今晚卻很好,雖然月光也還是淡淡的。

第三段:我也像超出了平常的自己,到了另一世界里。我愛熱鬧,也愛冷靜;愛群居,也愛獨處……便覺是個自由的人?!仪沂苡眠@無邊的荷香月色好了。

第六段:但熱鬧是它們的,我什么也沒有。

第八段:這真是有趣的事,可惜我們現(xiàn)在早已無福消受了。

第十段:這令我到底惦著江南了。

2、作者的思想感情在文中是怎樣變化的?

明確:因為這幾天心里頗不寧靜,忽然想起日日走過的荷塘,在滿月的光里,總該另有一番樣子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚卻很好,我可以享受這無邊的荷香月色。荷塘月色的確很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦朧和諧,令人心醉。荷塘四周非常幽靜,只有樹上的蟬聲和水里的蛙聲最熱鬧,而我什么也沒有。忽然又想起采蓮的事情來了,那真是有趣的事,可惜我們現(xiàn)在早已無福消受了。采蓮令我惦著江南了,這樣想著回到了家里。有人把這篇文章所表現(xiàn)的思想感情概括為“淡淡的喜悅,淡淡的哀愁”,是很貼切的,但作者的感情底色是“不寧靜”。

(三)分析鑒賞。

1、第六段寫“熱鬧是它們的,我什么也沒有”,作者為什么會如此傷感?

明確:作者想尋找美景,使自己寧靜,平息自己矛盾的心情而不得,當(dāng)然傷感。

2、第七段采蓮與文章主體有什么關(guān)系?為什么會想起采蓮的事情?

明確:以采蓮的熱鬧襯托自己的孤寂,且荷蓮?fù)?,作者又是揚州人,對江南習(xí)俗很了解。

明確:一方面有照應(yīng)文章開頭的作用,但主要目的還是以靜寫動,以靜來反襯自己心里的極不寧靜。心里的不寧靜,是社會現(xiàn)實的劇烈動蕩在作者心中引起的波瀾。全篇充滿著動與靜的對立統(tǒng)一:社會的動蕩與荷塘一隅的寂靜,內(nèi)心的動蕩與內(nèi)心的寧靜形成對立統(tǒng)一,文章開頭心里不寧靜,在月夜荷塘幽美的景色的感染下趨于心靜,走出荷塘又回到不寧靜的現(xiàn)實中來,也形成對立、轉(zhuǎn)化。

三、課堂小結(jié)。

這篇作品獲得人們特別贊賞的原因,就在于它寫景特別工細(xì)。朱自清在表現(xiàn)月色下的荷塘和荷塘上的月色這兩個組成部分的時候,還進一步作更精細(xì)的分解剖析,把這兩個部分再分解剖析成許多更小的部分,然后逐一描寫并且從景物觀賞者的視覺、嗅覺、聽覺,以及景物的靜態(tài)、動態(tài)等角度,寫出它們的種種性狀,從而把景物表現(xiàn)得格外細(xì)膩。

四、作業(yè)設(shè)計。

研究性學(xué)習(xí)參考論題。請你就以下論題中的一個或另擬論題,從網(wǎng)絡(luò)上尋找有關(guān)資料,寫出你的研究結(jié)果。

1、走近朱自清。

2、朱自清為什么“不寧靜”?

3、談《荷塘月色》的寫景藝術(shù)。

4、談《荷塘月色》的感情線索。

必修一數(shù)學(xué)教案篇九

專題八當(dāng)今世界經(jīng)濟的全球化趨勢。

通史概要:

當(dāng)今世界經(jīng)濟發(fā)展有兩個明顯的趨勢:一是世界經(jīng)濟區(qū)域集團化,二是世界經(jīng)濟全球化。世界經(jīng)濟區(qū)域集團化是最終實現(xiàn)經(jīng)濟全球化的重要步驟和途徑,經(jīng)濟全球化則是區(qū)域經(jīng)濟集團化的最終歸宿。

世界經(jīng)濟區(qū)域集團化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強合作的結(jié)果,也是世界經(jīng)濟競爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟競爭和客觀上存在的分工。區(qū)域集團化的發(fā)展分為三個階段:第一階段為五六十年代,世界經(jīng)濟集團化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團化成為一種世界經(jīng)濟現(xiàn)象。歐洲區(qū)域集團化趨勢進一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟集團也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團化掀起新的浪潮,進入了較高層次的經(jīng)濟一體化時期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟集團。

世界經(jīng)濟全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟全球化的過程中的問題是:在經(jīng)濟全球化的過程中,不可避免地把資本主義固有的矛盾擴展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機、全球性的經(jīng)濟金融危機、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。

我國在當(dāng)今世界經(jīng)濟發(fā)展趨勢中,作為發(fā)展中國家,應(yīng)該如何面對機遇和挑戰(zhàn),成了新時期經(jīng)濟發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強同東盟的聯(lián)系的史實中,我們的態(tài)度是:在堅持獨立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強國際的合作與交流,參與國際競爭,抓住機遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經(jīng)濟發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟發(fā)展趨勢這一經(jīng)濟現(xiàn)象,樹立正確的.發(fā)展觀。

一歐洲的聯(lián)合。

課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。

教學(xué)目標(biāo):

(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟進入“黃金時代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認(rèn)識歐洲聯(lián)盟成立對世界經(jīng)濟和政治格局的影響。

概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。

(2)過程與方法:通過討論西歐經(jīng)濟在二戰(zhàn)后進入“黃金時代”的共同原因,進一步思考中國的社會主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗,學(xué)習(xí)用聯(lián)系的方法看待問題,提高理論指導(dǎo)實踐的能力;通過分組學(xué)習(xí),搜集“歐共體”及“歐盟”成立的資料,了解整個歐洲走向聯(lián)合的過程,認(rèn)識當(dāng)今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。

(3)情感、態(tài)度與價值觀:通過對歐洲走向聯(lián)合這段歷史的學(xué)習(xí),認(rèn)識當(dāng)今國際社會國家間團結(jié)協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實的歸納,得出一個別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實際,進一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感。

教學(xué)課時:1課時。

重點難點:

重點:歐洲走向聯(lián)合過程及影響。

難點:歐洲走向聯(lián)合的原因。

教學(xué)建議:

1、本課共有三個方面的內(nèi)容,“西歐經(jīng)濟的'黃金時代'”主要講述:二戰(zhàn)后的20世紀(jì)50年代到60年代,西歐各國經(jīng)濟在恢復(fù)的基礎(chǔ)上,進入調(diào)整增長期,被稱為西歐經(jīng)濟的“黃金時代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進一步表明歐洲走向聯(lián)合的趨勢。

2、西歐經(jīng)濟高速發(fā)展的共同原因:第一,西歐各國進行社會改革和政策調(diào)整。進行社會改革,例如:推行福利制度,適當(dāng)改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計民生的重要工業(yè)部門。這些政策的推行,促進了西歐經(jīng)濟的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計劃的實施,解決了西歐戰(zhàn)后經(jīng)濟發(fā)展的啟動資金,西歐重工業(yè)在短時期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產(chǎn)業(yè)部門進行了改造,使勞動生產(chǎn)率大大提高,從而有力地推動了經(jīng)濟的高速發(fā)展。

3、伴隨著歐洲經(jīng)濟合作的成功,歐洲經(jīng)濟不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個更加強大的團體來維護自己的利益。于是在政治領(lǐng)域的合作很快便實施開來。

4、為進一步加強歐洲共同體之間的經(jīng)濟合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實現(xiàn)經(jīng)濟的聯(lián)合,從而進一步加強歐洲各國之間的政治合作。

二、發(fā)展的亞太。

課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。

教學(xué)目標(biāo):

(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟合作組織建立的過程,探討亞太國家加強合作的途徑與方式。

(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學(xué)習(xí)用比較的方法認(rèn)識歷史問題;通過上網(wǎng)等途徑搜集中國參加apec會議的資料,多渠道去了解和認(rèn)識apec建立的史實及影響。

(3)情感、態(tài)度與價值觀:通過對東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟一體化進程的學(xué)習(xí)和了解,體會當(dāng)今世界國家間加強合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。

教學(xué)課時:1課時。

重點難點:

重點:通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織,認(rèn)識當(dāng)今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。

難點:中國積極參與世界區(qū)域經(jīng)濟組織的意義。

教學(xué)建議:

1、在經(jīng)濟全球化的進程中,亞太地區(qū)的經(jīng)濟集團化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟集團有兩個分別在該地區(qū)。這一地區(qū)成為當(dāng)今世界上經(jīng)濟發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個經(jīng)濟區(qū)域集團為例,介紹了當(dāng)今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。每個集團內(nèi)部有著自身的規(guī)則的同時也不斷與其它區(qū)域集團相聯(lián)系,從而使世界經(jīng)濟形成了密不可分的一個整體。

2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時近三分之一世紀(jì)。東盟在維護和促進各成員國相互間的政治和經(jīng)濟合作,實現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。

3、日本經(jīng)濟的崛起,特別是歐洲經(jīng)濟一體化實施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟的內(nèi)在動力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價值觀念、風(fēng)俗習(xí)慣等又頗相似;經(jīng)濟互補性強;相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實行經(jīng)濟一體化的必要性,又具有實行經(jīng)濟一體化的可能性。美國認(rèn)為要取得世界經(jīng)濟的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟區(qū)域集團,才能在經(jīng)濟全球化大潮中立于不敗之地。

4、二十世紀(jì)七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經(jīng)濟政策和經(jīng)濟迅速發(fā)展為亞太區(qū)域經(jīng)濟合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟合作的方向發(fā)展。亞太經(jīng)合組織的主要活動,為各成員提供區(qū)域經(jīng)濟,科技,貿(mào)易和發(fā)展等方面多邊合作的機會,交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗,促進本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運作模式均區(qū)別于歐盟和nafta,有自身的特點,這些特點適應(yīng)了apec各成員國經(jīng)濟發(fā)展的狀況和經(jīng)濟運行模式。

三、經(jīng)濟全球化的世界。

課標(biāo)要求:

(1)以“布雷頓森林體系”建立為例,認(rèn)識第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟體系的形成。

(2)了解世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟全球化進程中的作用。了解中國參加世界貿(mào)易組織(wto)的史實,認(rèn)識其影響和作用。

(3)了解經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。

教學(xué)目標(biāo):

(1)知識與能力:了解“布雷頓森林體系”建立的基本史實,分析其影響;簡述世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟全球化進程中的作用;了解中國參加世界貿(mào)易組織(wto)的史實,認(rèn)識其影響和作用;概述經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。

(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿(mào)易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟全球化出現(xiàn)的問題?從多角度去分析歷史問題。

必修一數(shù)學(xué)教案篇十

用坐標(biāo)法解決幾何問題的步驟:

第二步:通過代數(shù)運算,解決代數(shù)問題;

第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論、

重點與難點:直線與圓的方程的應(yīng)用、

問 題設(shè)計意圖師生活動

生:回顧,說出自己的看法、

2、解決直線與圓的位置關(guān)系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問題的方法、

問 題設(shè)計意圖師生活動

3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題

生:自 學(xué)例4,并完成練習(xí)題1、2、

生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、

8、小結(jié):

(1)利用“坐標(biāo)法”解決問對知識進行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、

生:閱讀教科書的例3,并完成第

問 題設(shè)計意圖師生活動

題的需要準(zhǔn)備什么工作?

(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?

(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?

必修一數(shù)學(xué)教案篇十一

引用:本文《高中化學(xué)必修二教案(人教版)》來源于師庫網(wǎng),由師庫網(wǎng)博客摘錄整理,以下是的詳細(xì)內(nèi)容:開發(fā)利用金屬礦物和海水...《基本營養(yǎng)物質(zhì)》教案化學(xué)反應(yīng)的速率和限度化學(xué)能與熱能化學(xué)與資源綜合利用、環(huán)...最簡單的有機化合物dd...《生活中兩種常見的'有機...來自石油和煤的兩種基本...引用:師庫網(wǎng)溫馨提示本篇內(nèi)容來源于師庫網(wǎng),旨在用于課件制作交流,非盈利性質(zhì),僅供參考,針對本文的問題如需了解更詳細(xì),可留言或者聯(lián)系客服tags:教案、課件、師庫網(wǎng)、教案網(wǎng)、課件網(wǎng)

必修一數(shù)學(xué)教案篇十二

1.要讀好課本。

有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強自己從課本入手進行研究的意識。

2.要記好筆記。

首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。

3.要做好作業(yè)。

在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責(zé)任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。

4.要寫好總結(jié)。

一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。“不會總結(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗是成功的基石。”自然界適者生存的生物進化過程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。

通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。

1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。

小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。

3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時間,及時對所學(xué)進行鞏固。

4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。

5.錯題反復(fù)研究。自己準(zhǔn)備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。

必修一數(shù)學(xué)教案篇十三

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。

(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。

(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。

(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的。

必修一數(shù)學(xué)教案篇十四

1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。

【過程與方法】 經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系

【情感態(tài)度與價值觀】 感受數(shù)形結(jié)合的思想方法;

【教學(xué)重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。

【教學(xué)難點】利用數(shù)軸比較有理數(shù)的大小。

(一)創(chuàng)設(shè)情境,引入課題

(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?

學(xué)生回答.

(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容―數(shù)軸(板書課題)

(二)得出定義,揭示內(nèi)涵

與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):

(1)畫直線,取原點

(2)標(biāo)正方向

(3)選取單位長度,標(biāo)數(shù)(強調(diào):負(fù)數(shù)從0向左寫起)。

概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。

(三)強化概念,深入理解

1、下列圖形哪些是數(shù)軸,哪些不是,為什么?

學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。

2、學(xué)生自己在練習(xí)本上畫一個數(shù)軸。教師在黑板上畫

(四)動手練習(xí),歸納總結(jié)

1、在數(shù)軸上的點表示有理數(shù)。

一個學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。

明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”

2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育

3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題

(1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;

(2)正數(shù)都(大于 )0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。

例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2

鞏固所學(xué)知識

(五)、歸納小結(jié),強化思想

師生總結(jié)本課內(nèi)容。

1、數(shù)軸的概念,數(shù)軸的三要素

2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系

3、所有的有理數(shù)都可以用數(shù)軸上的點來表示

師:你感到自己今天的表現(xiàn)怎樣?

習(xí)題2.2 1、2、3

選作第4題

必修一數(shù)學(xué)教案篇十五

教學(xué)目標(biāo)。

3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學(xué)重難點。

教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學(xué)難點:如何將幾何等實際問題化歸為向量問題.

教學(xué)過程。

由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。

思考:

運用向量方法解決平面幾何問題可以分哪幾個步驟?

運用向量方法解決平面幾何問題可以分哪幾個步驟?

“三步曲”:

(2)通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。

(3)把運算結(jié)果“翻譯”成幾何關(guān)系.

必修一數(shù)學(xué)教案篇十六

教學(xué)目標(biāo)。

理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用.

教學(xué)重難點。

1.教學(xué)重點:兩角和、差正弦和正切公式的推導(dǎo)過程及運用;。

2.教學(xué)難點:兩角和與差正弦、余弦和正切公式的靈活運用.

教學(xué)過程。

必修一數(shù)學(xué)教案篇十七

1.閱讀課本練習(xí)止。

2.回答問題:

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3.完成練習(xí)。

4.小結(jié)。

二、方法指導(dǎo)。

1.在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。

一、提問題。

1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。

二、變題目。

1.試求下列函數(shù)的反函數(shù):

(1);(2);(3);(4)。

2.求下列函數(shù)的定義域:。

(1);(2);(3)。

3.已知則=;的定義域為。

1.對數(shù)函數(shù)的有關(guān)概念。

(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。

(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。

(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。

2.反函數(shù)的概念。

在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。

3.與對數(shù)函數(shù)有關(guān)的定義域的求法:

4.舉例說明如何求反函數(shù)。

一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,

二、課外思考:

1.求定義域:

2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。

必修一數(shù)學(xué)教案篇十八

(1)掌握與()型的絕對值不等式的解法.

(2)掌握與()型的絕對值不等式的解法.

(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。

教學(xué)重點:型的不等式的解法;。

教學(xué)難點:利用絕對值的意義分析、解決問題.

教學(xué)過程設(shè)計。

教師活動。

學(xué)生活動。

設(shè)計意圖。

一、導(dǎo)入新課。

【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?

【概括】。

口答。

絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。

二、新課。

【提問】如何解絕對值方程.。

【質(zhì)疑】的解集有幾部分?為什么也是它的解集?

【練習(xí)】解下列不等式:

(1);

(2)。

【設(shè)問】如果在中的,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。

所以,原不等式的解集是。

【設(shè)問】如果中的是,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。

由得。

由得。

所以,原不等式的解集是。

口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。

畫出數(shù)軸,思考答案。

不等式的解集表示為。

畫出數(shù)軸。

思考答案。

不等式的解集為。

或表示為,或。

筆答。

(1)。

(2),或。

筆答。

筆答。

根據(jù)絕對值的意義自然引出絕對值方程()的解法.。

由淺入深,循序漸進,在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.。

針對解()絕對值不等式學(xué)生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.。

落實會正確解出與()絕對值不等式的教學(xué)目標(biāo).。

在將看成一個整體的關(guān)鍵處點撥、啟發(fā),使學(xué)生主動地進行練習(xí).。

繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤.。

三、課堂練習(xí)。

解下列不等式:

(1);

(2)。

筆答。

(1);

(2)。

檢查教學(xué)目標(biāo)落實情況.。

四、小結(jié)。

的解集是;的解集是。

解絕對值不等式注意不要丟掉這部分解集.。

五、作業(yè)。

1.閱讀課本含絕對值不等式解法.。

2.習(xí)題2、3、4。

課堂教學(xué)設(shè)計說明。

1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).

2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學(xué)生解題能力的目的.

3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.

必修一數(shù)學(xué)教案篇十九

1.使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。

2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3.在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。

教學(xué)重點,難點。

重點是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點是對概念的熟悉。

教學(xué)用具。

投影儀,計算機。

教學(xué)方法。

引導(dǎo)發(fā)現(xiàn)法。

教學(xué)過程。

一.引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。

(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

二.講解新課。

2.函數(shù)的奇偶性(板書)。

學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)。

(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。

提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)。

(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

例1。判定下列函數(shù)的奇偶性(板書)。

(1);(2);

(3);;

(5);(6)。

(要求學(xué)生口答,選出12個題說過程)。

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)。

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

例3。判定下列函數(shù)的奇偶性(板書)。

(1);(2);(3)。

由學(xué)生回答,不完整之處教師補充。

解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)。

(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù)。

(3)當(dāng)時,于是,

當(dāng)時,,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

三.小結(jié)。

1.奇偶性的概念。

2.判定中注重的問題。

四.作業(yè)略。

五.板書設(shè)計。

2.函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點對稱是函數(shù)例2。小結(jié)。

具備奇偶性的必要條件。

(4)函數(shù)按奇偶性分類分四類。

探究活動。

(2)判定函數(shù)在上的單調(diào)性,并加以證實。

在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:

必修一數(shù)學(xué)教案篇二十

教學(xué)目標(biāo)。

熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。

教學(xué)重難點。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學(xué)過程。

復(fù)習(xí)。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

必修一數(shù)學(xué)教案篇二十一

3、情感態(tài)度與價值觀目標(biāo):感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標(biāo)系在解決實際問題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。

重點:理解平面直角坐標(biāo)中點與數(shù)的一一對應(yīng)關(guān)系;

難點:根據(jù)坐標(biāo)描出點的位置,以及坐標(biāo)軸上的點的坐標(biāo)特點。

教師準(zhǔn)備四張大的紙質(zhì)坐標(biāo)格子。

一、溫故知新,導(dǎo)入新課。

游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對,大家學(xué)習(xí)積極性很高,今天老師先考考你們, 看你們掌握了多少。

我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學(xué)們先找準(zhǔn)自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。

我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學(xué)。

二、新課教學(xué)

課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標(biāo)。例如點a數(shù)軸上的坐標(biāo)是-4,點b數(shù)軸上的坐標(biāo)是2;我們說坐標(biāo)是3.5的點,也可以在數(shù)軸上唯一確定。

學(xué)生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小

b說我們可以每個點列一個數(shù)軸???

教師活動:引導(dǎo)學(xué)生思考,怎么才能用同一標(biāo)準(zhǔn),方便的確定每一點的位置?

結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?

得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

那有了這樣的平面直角坐標(biāo)系,平面內(nèi)的點就可以用之前學(xué)的有序數(shù)對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標(biāo)是3,垂足n在y軸上的坐標(biāo)是4,我們說a的坐標(biāo)是3,縱坐標(biāo)是4,有序數(shù)對(3,4)就叫做a的坐標(biāo),記作a(3,4)

教師提問2:同學(xué)們按照這種做法,在坐標(biāo)紙上標(biāo)出b、c、d的坐標(biāo)。

教師活動:走下講臺,關(guān)注學(xué)生的匯坐標(biāo)過程方法,指出學(xué)生出現(xiàn)問題的地方,并予以改正。

教師提問3:在橫縱坐標(biāo)軸上各標(biāo)一點e、f,問:坐標(biāo)原點以及這兩點的坐標(biāo)是什么?

教師活動:引導(dǎo)學(xué)生思考?xì)w納坐標(biāo)軸上的點的坐標(biāo)的特點。

得出結(jié)論:原點的坐標(biāo)是(0,0),x軸上的點的坐標(biāo)的縱坐標(biāo)為0;y軸上的點的坐標(biāo)的橫坐標(biāo)為0。

三、課程鞏固

師生互動:與學(xué)生一起回憶平面直角坐標(biāo)系的各部分的意義,平面內(nèi)的點怎么對應(yīng)坐標(biāo),以及坐標(biāo)軸上的點的坐標(biāo)特點。

“練一練”:

在黑板上貼出四張事先準(zhǔn)備好的紙質(zhì)坐標(biāo)格子,在上面標(biāo)出任意的abcdefg等點,每組我點一個按坐標(biāo)序列對,對應(yīng)的同學(xué)上黑板,來描出各點的坐標(biāo)。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來描點。

教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學(xué)生不要氣餒,給予鼓勵,爭取下一次可以獲勝。

四、小結(jié)作業(yè):

思考平面直角坐標(biāo)系中坐標(biāo)與點的對應(yīng)關(guān)系,如何由坐標(biāo)值確定點的位置。下節(jié)課我們會探討這個問題。

平面直角坐標(biāo)系:平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸組成

水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;

豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;

兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

必修一數(shù)學(xué)教案篇二十二

教學(xué)目標(biāo)。

1、理解平面向量的坐標(biāo)的概念;。

2、掌握平面向量的坐標(biāo)運算;。

3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.

教學(xué)重難點。

教學(xué)重點:平面向量的坐標(biāo)運算。

教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.

教學(xué)過程。

平面向量基本定理:。

什么叫平面的一組基底?

平面的基底有多少組?

引入:。

1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來。

表示?

2.平面向量是否也有類似的表示呢?

【本文地址:http://www.aiweibaby.com/zuowen/17317289.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔