平方差公式說課稿大全(16篇)

格式:DOC 上傳日期:2023-12-05 05:13:20
平方差公式說課稿大全(16篇)
時間:2023-12-05 05:13:20     小編:雅蕊

對于那個時期的工作和學習,我們需要做一份詳細的總結(jié)。寫作需要從不同角度思考問題,為讀者提供多樣性的觀點。通過觀看總結(jié)范文,我們可以掌握一些寫作技巧和方法,提高自己的表達能力。

平方差公式說課稿篇一

3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。

重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導(dǎo)的理解及字母的廣泛含義。

以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。

(一)創(chuàng)設(shè)問題情境,引入新課。

1、你會做嗎?

(1)(x+1)(x—1)=_____=()()。

(3)(3x+2)(3x—2)=_____=()()。

2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學生興趣。)。

交流上面第1題的答案,引導(dǎo)學生進一步思考:

(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。

我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎(chǔ)上,讓學生用語言敘述公式,并讓學生熟記。)。

(三)嘗試探究。

(四)鞏固練習。

(l)(x+a)(x—a)。

(2)(m+n)(m—n)(3)(a+3b)(a—3b)。

(4)(1—5y)(l+5y)(5)998×1002。

(6)395×405。

2、直接寫出答案:

(l)(—a+b)(a+b)。

(2)(a—b)(b+a)。

(3)(—a—b)(—a+b)。

(4)(a—b)(—a—b)(5)999×1001。

(6)×(讓學生獨立完成,互評互改。)。

(五)小結(jié)。

2.運用公式要注意什么?

(1)要符合公式特征才能運用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。

(學生回答,教師總結(jié))。

(六)作業(yè)。

p106習題1—5題。

教學反思。

通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。

平方差公式說課稿篇二

前不久聽了我校朱昌榮老師的一節(jié)數(shù)學課,這節(jié)課是朱老師安排的一節(jié)乘法公式——平方差公式的新授課,這節(jié)課給我留下了深刻的影響。

教師講課語言清晰,有較強的表達和應(yīng)變能力,課堂教學基本功好。

乘法公式的引入,使學生既復(fù)習了多項式的乘法運算,又形象直觀地理解了乘法公式的內(nèi)在實質(zhì)。課堂教學中充分體現(xiàn)了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內(nèi)的練習量、內(nèi)容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當?shù)募由顟?yīng)用,滿足了不同層次的學生的學習。

一點建議:

1、引入時,還可以安排得生動一點,可以先設(shè)疑,提出問題,讓學生探討,猜想,歸納,以激發(fā)學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結(jié)論來得出,從而使學生感到今天要學的內(nèi)容的重要性,這樣學生的學習將更主動。

2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數(shù)或項。相同項在前,相反項在后,結(jié)果才能用相同項的平方減去相反項的平方。

3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應(yīng)該給出恰當準確的解釋。

以上是我的淺顯認識,不妥之處,還望朱老師海涵,大家批評。

謝謝。

平方差公式說課稿篇三

王老師上課時通過學生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出用平方差公式進行因式分解,這樣得出平方差公式后,并且把乘法公式進行對比,通過例題、練習與小結(jié),教會學生如何正確應(yīng)用平方差公式.這里特別要求學生注意公式的結(jié)構(gòu),教師可以用對應(yīng)思想來加強對公式結(jié)構(gòu)的理解和訓(xùn)練。王老師放手讓學生探索,促進學生主動發(fā)展的教學方法貫穿于這節(jié)課的始終。

從學生的練習情況來看,許多同學都掌握了這節(jié)課的知識,整個課堂中,以學生練為主,王老師能敢于創(chuàng)新、敢于探索,整節(jié)課的學習,教師始終是學生學習活動的組織者、指導(dǎo)者和合作者,而學生始終都是一個發(fā)現(xiàn)者、探索者,充分發(fā)揮他們的學習主體作用。這樣大大提高了這節(jié)課的效率。

教師講課語言簡捷、清晰,有較強的表達和應(yīng)變能力,課堂教學基本功好。乘法公式的引入由兩種形式的'引入,又形象直觀地理解了乘法公式的內(nèi)在實質(zhì)。做到以點撥為主的教學。對于公式的牲能嚴格要求學生理解,并能讓學生自己舉例符合公式形狀的例子,課堂內(nèi)的練習量、內(nèi)容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當?shù)募由顟?yīng)用,滿足了不同層次的學生的學習。效果是比較顯著的。

平方差公式說課稿篇四

《平方差公式》這一節(jié)重點和難點就在于結(jié)構(gòu)的不變性和字母的可變性。因此我的教學設(shè)計思想是從讓每一位學生理解和掌握公式結(jié)構(gòu)的不變性和字母的可變性從而達到熟練運用的目的。只是在具體的教學手段和措施及側(cè)重點上有所區(qū)別。雖然如此,我個人認為基本目標已經(jīng)達到,也取得了初步成效,尤其是對易錯點的側(cè)重讓學生記憶深刻效果更明顯。

具體來說,成功之處我們都基本實現(xiàn)了教學目標,突出了教學重難點,教學過程環(huán)環(huán)相扣,題目設(shè)計逐層深入,及時反饋學習效果,精講多練?;緦崿F(xiàn)了預(yù)想的效果。我自認為該課成功之處主要體現(xiàn)在:

1、課前準備充分,教學設(shè)計合理充實,有很強的實用性和創(chuàng)造性。

2、導(dǎo)入新穎,從小故事出發(fā),激發(fā)學生興趣,給學生留下懸念,同時對平方差公式有了初步的感性認識,從而揭示課題。然后再通過一系列的探索和練習以及公式的幾何解釋,使學生對新知識的理解由感性認識到理性認識的過渡。

3、選題合理、有針對性和層次性。在鞏固練習中通過像(x+y)(x-y)這種簡單的套公式題型逐漸轉(zhuǎn)換到涉及帶負號的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過各類變式和判斷及找錯的題型問題的暴露,及時處理。使得學生逐步加深對公式結(jié)構(gòu)的理解和記憶。然后轉(zhuǎn)回到課前給學生留下的疑問,最后實現(xiàn)創(chuàng)新,用簡便方法計算像2002×1998.使得整個課堂容量大,充實。

進的例題練習讓學生逐步理解公式中字母的可變性。最后達到對公式的全面和深刻的理解和掌握,使公式的運用得到升華。

5、本節(jié)課的重點和難點就是在于結(jié)構(gòu)的不變性和字母的可變性。我就側(cè)重運用公式時的易錯點。不僅在訓(xùn)練期間多次強調(diào)的方式提醒學生易錯點,相同項在前,相反項在后,結(jié)果才能用相同相的平方減去相反項的平方,平方時底是單項式但系數(shù)不是1或底數(shù)是多項式時不要忘記打上括號,而且在最后的小結(jié)中給學生總結(jié)更是讓學生影響深刻。

6、對公式進行幾何意義的解釋,我通過直觀演示操作,將學生不易理解的問題,使它變得直觀,從而顯得簡單。

3、課堂效率有待提高。

改進方向:1、繼續(xù)加強平時的“生本”理念的灌輸和學生討論、發(fā)言的培訓(xùn)和鼓勵。

2、教學設(shè)計時更全面、深入地考慮學生的問題也就是備課備學生。

3、加強對學生發(fā)現(xiàn)問題、總結(jié)規(guī)律、提出疑問等課堂效果體現(xiàn)的關(guān)鍵環(huán)節(jié)。

的培訓(xùn)。

4、課堂教學注重多措施了解學生學習效果的反饋。俗話說:“金無足赤,人無完人”。一節(jié)課上得再好,還是有些問題沒有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請各位同仁批評指正,本人一定笑納,并表示感謝。

平方差公式說課稿篇五

本周x上午我聽了x老師一節(jié)關(guān)于《運用平方差公式進行因式分解》的公開課,x老師以自己扎實的數(shù)學基本功,細致嚴謹?shù)臄?shù)學解題思路,靈活輕松的師生互動,為我們獻上了一節(jié)優(yōu)質(zhì)的數(shù)學課。

x老師針對本章內(nèi)容所要用上了前面的知識做了細致的.復(fù)習。實現(xiàn)了本章節(jié)知識點的聯(lián)系與復(fù)習回顧,對接下去的學習做了很好的鋪墊。

x老師通過求長方形的面積來引導(dǎo)學生探索、總結(jié)出運用平方差公式進行因式分解的法則,利用數(shù)形結(jié)合,讓學生對這個法則的理解更深入,同時突破了難點,體現(xiàn)了以教師為主導(dǎo)、學生自主探究、討論、合作交流的新課改理念。

x老師通過練習,讓學生觀察步驟,并做出總結(jié)。使學生加深了對知識的理解,學會觀察,發(fā)現(xiàn),總結(jié)知識。最后x老師還給學生編了個解題的順口溜,既方便讓學生記憶,又能鞏固知識。

(1)整節(jié)課老師講得多,學生個別回答較少。

(2)學生的討論與合作學習還需加強,討論問題還不夠深入,應(yīng)讓學生從合作學習中有所提高,從與它人的交流中碰撞出思維的火花。

(3)還需加強的對知識點的認識,比如為什么要學升降冪,是為了結(jié)果的有序,數(shù)學的結(jié)果需要簡潔有序。這樣讓學生很清楚,有目的的學習效果總是比較好的。

平方差公式說課稿篇六

一、學習目標:

2.會推導(dǎo)平方差公式,并能運用公式進行簡單的運算.

二、重點難點。

難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

三、合作學習。

你能用簡便方法計算下列各題嗎?

12001×19992998×1002。

導(dǎo)入新課:計算下列多項式的積.

1x+1x-12m+2m-2。

32x+12x-14x+5yx-5y。

結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.

即:a+ba-b=a2-b2。

四、精講精練。

平方差公式說課稿篇七

教師講課語言清晰,有較強的表達和應(yīng)變能力,課堂教學基本功好。

乘法公式的引入,使學生既復(fù)習了多項式的乘法運算,又形象直觀地理解了乘法公式的內(nèi)在實質(zhì)。課堂教學中充分體現(xiàn)了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內(nèi)的練習量、內(nèi)容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當?shù)募由顟?yīng)用,滿足了不同層次的學生的學習。

一點建議:

1、引入時,還可以安排得生動一點,可以先設(shè)疑,提出問題,讓學生探討,猜想,歸納,以激發(fā)學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結(jié)論來得出,從而使學生感到今天要學的內(nèi)容的重要性,這樣學生的學習將更主動。

2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數(shù)或項。相同項在前,相反項在后,結(jié)果才能用相同項的平方減去相反項的平方。

3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應(yīng)該給出恰當準確的解釋。

以上是我的淺顯認識,不妥之處,還望楊老師海涵,大家批評。

平方差公式說課稿篇八

在探索平方差公式的過程中,發(fā)展學生的符號感和推理能力。在計算的過程中發(fā)現(xiàn)規(guī)律,并能用符號表達,體會數(shù)學語言的嚴謹與簡潔。

激發(fā)學習數(shù)學的興趣,鼓勵學生自己探索,培養(yǎng)學生的合作意識與創(chuàng)新能力。

重點。

難點。

一、復(fù)習導(dǎo)入。

1.回顧多項式乘多項式的法則。

2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?

(1);(2).

師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?

變形成:,

再試試把它當成多項式乘法來算算,有什么發(fā)現(xiàn)?

繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?

我們把這個有趣的結(jié)論整理并推廣,就可以得到今天要學習的一個乘法公式,平方差公式。

二、新課講解。

探究新知。

1.觀察相乘的兩個多項式有什么特點?運算的結(jié)果有什么特點?

討論交流后總結(jié)出:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?

3.從上面的計算中你有什么發(fā)現(xiàn)呢?

引導(dǎo)學生發(fā)現(xiàn)對于不同形式的兩個數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數(shù)。這個公式叫做平方差公式。

下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)。

(1);(2);(3);

(4);(5);(6).

學生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達到一個新的高度:所謂兩數(shù)和、兩數(shù)差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。

三、典例剖析。

師生共同解答,教師板書。初學運用時要寫清楚步驟。

學生解答,關(guān)注學生是否理解平方差公式,能否正確識別乘法公式里的。

例3.計算:

學生解答,教師巡視,關(guān)注學生能否合理變形,靈活運用公式計算。

四、課堂練習。

1.下面各式的計算對不對?如果不對,應(yīng)怎樣改正?

(1);

(1);(2);

(3);(4).

3.計算:

(1);(2);

教師要注意發(fā)現(xiàn)學生的錯誤,組織學生對錯誤進行分析,對于第1題可以引導(dǎo)學生分析導(dǎo)致錯誤的原因。

五、小結(jié)。

師生共同回顧平方差公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學生掌握不夠牢固的知識進行辨析、強調(diào)與補充,學生也可以談一談個人的學習感受。

六、布置作業(yè)。

p50第1、6題。

平方差公式說課稿篇九

平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復(fù)習多項式乘以多項式的計算導(dǎo)入新課,為探究新知識奠定基礎(chǔ)。在重難點處設(shè)計問題:“觀察以上3個算式的特點和運算結(jié)果的特點,對比等號兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學生發(fā)現(xiàn)規(guī)律并嘗試運用自己的語言來描述。

問題提出后,學生能積極進行分組討論、交流,各組小組長闡述自己小組討論的結(jié)果。大多數(shù)的學生能找出規(guī)律,說出大概意思,但是無法用精準的語言完整的描述出來,語言表達無條理、含糊。針對這種情況,在以后的課堂教學過程中要注意加強對學生的邏輯思維能力和語言表達能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。

在例題展示環(huán)節(jié)中,我通過2道例題的運算,訓(xùn)練學生正確應(yīng)用公式進行計算,體會公式在簡化運算中的作用。實踐練習的設(shè)計,使學生從不同角度認識平方差公式,進一步加強學生對公式的理解。在運用公式時,學生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。

拓展延伸環(huán)節(jié)中,學生通過尋找算式中的a,b項,慢慢發(fā)現(xiàn)a,b項不僅可以代表數(shù),也可以代表單項式、多項式等代數(shù)式,這樣設(shè)計可以進一步深化學生對字母含義的理解。在學生獨立完成練習和堂測中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學生對較復(fù)雜的多項式不能準確找出a,b項,特別是b項代表多項式時,負數(shù)去括號時出錯較多。

最后通過設(shè)計遞進式的問題串,引導(dǎo)學生自己一步步總結(jié)出本節(jié)課所學的知識內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語言表達能力。

本節(jié)課采用學習小組討論、交流的學習方式,讓學優(yōu)生帶動學困生,整體教學效果良好,學生基本掌握平方差公式的運用,對于較復(fù)雜的a、b項的運算,在自習課上將加強練習。

平方差公式說課稿篇十

本節(jié)課是圍繞“引導(dǎo)學生有效預(yù)習”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學生思考,在學生的預(yù)習基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。

讓學生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認識,有助于讓學生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習的鞏固,讓學生把握教材,吃透教材,讓學生更加熟練、準確,起到強化、鞏固的作用,讓學生領(lǐng)會換元的思想,達到初步發(fā)展學生綜合應(yīng)用的能力。

本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎(chǔ)上充分認識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學生學會合情推理的能力,同時也培養(yǎng)了學生愛思考,善交流的良好學習慣。

(一)知識與技能。

2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。

(二)過程與方法。

1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。

2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達能力。

3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學生的化歸思想。

4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。

5.通過活動4,讓學生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。

(三)情感與態(tài)度。

1.通過探究平方差公式,讓學生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。

平方差公式說課稿篇十一

教學目標:

一、知識與技能。

1、參與探索平方差公式的過程,發(fā)展學生的推理能力2、會運用公式進行簡單的乘法運算。

二、過程與方法。

1、經(jīng)歷探索過程,學會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的。

數(shù)學式子表達出,即給出公式。

2、在探索過程的教學中,培養(yǎng)學生觀察、歸納的能力,發(fā)展學生的符。

號感和語言描述能力。

三、情感與態(tài)度。

以探索、歸納公式和簡單運用公式這一數(shù)學情景,加深學生的體驗,增加學習數(shù)學和使用的信心。培養(yǎng)學生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學方法的逐步形成.

教學重點:公式的簡單運用。

教學難點:公式的推導(dǎo)。

教學方法:學生探索歸納與教師講授結(jié)合。

課前準備:投影儀、幻燈片。

平方差公式說課稿篇十二

(4)(+3z)(-3z)=_____.

(1)(x+1)(1+x),。

(2)(2x+)(-2x),。

(3)(a-b)(-a+b),。

(4)(-a-b)(-a+b)。

幫助學生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應(yīng)由易到難逐步安排學習這方面的內(nèi)容。

平方差公式說課稿篇十三

學習目標:

1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;。

3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會“特殊——一般——特殊”的認識規(guī)律.

學習重難點:

難點:探索平方差公式,并用幾何圖形解釋公式.

學習過程:

一、自主探索。

1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。

2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).

3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?

(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差?;蛘哒f兩個二項式必須有一項完全相同,另一項只有符號不同。

(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。

二、試一試。

平方差公式說課稿篇十四

(4)(+3z)(—3z)=_____。

(1)(x+1)(1+x),

(2)(2x+)(—2x),

(3)(a—b)(—a+b),

(4)(—a—b)(—a+b)。

幫助學生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應(yīng)由易到難逐步安排學習這方面的內(nèi)容。

平方差公式說課稿篇十五

會推導(dǎo)公式(a+b)(a-b)=a2-b2。

通過教學我對本節(jié)課的反思如下:

1、本節(jié)課我從復(fù)習舊知入手,在教學設(shè)計時提供充分探索與交流的空間,使學生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學生被動學習的局面。我在教學時沒有直接讓學生推導(dǎo)平方差公式,而是設(shè)置了一個做一做,讓學生通過計算四個多項式乘以多項式的題目,讓學生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學生學習數(shù)學的一般能力,讓學生體會發(fā)現(xiàn)的愉悅,激發(fā)學生學習數(shù)學的興趣,感覺效果很好。

不足:在學生將4個多項式乘多項式做完評價后,應(yīng)及時把他們歸納為某式的平方差的形式,以便學生順理成章的猜測公式的結(jié)果。

2、學生剛接觸這類乘法,我設(shè)計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果.我很細地給學生講了以上特點,學生容易接受,課堂氣氛活躍,收到了一定的效果。

3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。

4、學生錯誤主要是:

(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;

(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學中應(yīng)著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學生往往學起來容易,真正掌握起來困難。部分學生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。

總之,在以后的教學中我會更深入的專研教材,結(jié)合教學目標與要求,結(jié)合學生的實際特點,克服自己的弱點,盡量使數(shù)學課生動、自然、有趣。

平方差公式說課稿篇十六

平方差公式本節(jié)課的重點是要學生明白平方差公式及其推導(dǎo)(含代數(shù)驗證和幾何驗證),并能應(yīng)用平方差公式簡化運算,其中關(guān)鍵是要學生明確平方差公式的結(jié)構(gòu)特征,準確找到a、b。為了讓學生對平方差公式有個全面的認識和了解。先讓學生計算符合平方差公式的兩位數(shù)乘法,進而將數(shù)轉(zhuǎn)化為字母,從代數(shù)的角度,利用多項式乘多項式的知識,推導(dǎo)出平方差公式,接著從幾何角度讓學生加以解釋說明。在此基礎(chǔ)上,通過分析公式的結(jié)構(gòu)特征,加深對公式的理解。之后,設(shè)計了一個“尋找a、b”的環(huán)節(jié),通過這個練習進行難點突破。引導(dǎo)學生反思練習過程,得出“誰是a,誰是b,并不以先后為準,而是以符號為準”這一結(jié)論。緊接著給出兩組例題,考察學生對公式的應(yīng)用。最后通過一組判斷題和補充練習,拓展學生的.思維水平。

為了給學生滲透數(shù)形結(jié)合的思想,要從代數(shù)、幾何兩個角度證明平方差公式,但是從哪個角度入手,有利于知識的銜接,便于學生理解。最終決定給讓學生猜想結(jié)論,再用代數(shù)方法加以證明,后給出幾何解釋,符合知識的發(fā)生過程。

對于課本中的公式文字說明是“兩數(shù)和與這兩數(shù)差的積”的理解:公式中“a、b不僅表示一個數(shù)或字母,還可以表示代數(shù)式”。但這里說的是“兩數(shù)”,原因是所有的規(guī)律最初都是在具體的數(shù)字中發(fā)現(xiàn)的,然后才推廣到字母。所以這里說的數(shù)不再是具體的數(shù),而是代表一個整體;公式中說的“兩數(shù)和與兩數(shù)差的積”,從這個角度說,這兩項應(yīng)是完全相同的,差別只在于運算符號上。但由于我們之前介紹過“代數(shù)和”,(a+b)(a-b)也可以理解為(a+b)[a(-b)],就像許多教參上說的,是相同項與互為相反數(shù)的項,這樣就與課本定義發(fā)生矛盾。為了避免這個問題,我在介紹公式結(jié)構(gòu)特征時,只說“有一項完全相同,另一項只有符號不同”,學生可以自己去理解。

【本文地址:http://www.aiweibaby.com/zuowen/17324545.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔