范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信許多人會覺得范文很難寫?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
解簡易方程的教學反思篇一
很多時候,我們大人都喜歡用方程來解題,這固然是因為到了中學大量學習了各種各樣的方程,一元一次,一元二次,二元一次等等,但還有一個更重要的原因就是方程對解題思路的解放,列算式解決實際問題時,解題思路常常迂回曲折,而他從根本上讓學生脫離了繁瑣的思路分析,而列方程解決實際問題,解題思路往往直截了當,降低了思維難度,它讓學生從一個簡單的思路——找等量關系來解題。所以說,這個單元的知識如何教好,從而讓學生學好是非常重要的。
用字母表示數(shù)是學生學習代數(shù)初步知識的起步。在算術里,人們只對一些具體的、個別的數(shù)量關系進行研究,引入用字母表示數(shù)后,就可以表達、研究具有更普遍意義的數(shù)量關系??梢哉f,學習代數(shù)就是從學習用字母表示數(shù)開始的。
對小學生來說,從具體事物的個數(shù)抽象出數(shù)是認識上的一個飛躍,而由具體的、確定的數(shù)過渡到用字母表示抽象的、可變的數(shù),更是認識上的一個飛躍。而且,在用字母表示未知數(shù)的基礎上,使學生解決實際問題的數(shù)學工具,從列出算式解發(fā)展到列出方程解,這又是數(shù)學思想方法認識上的一次飛躍,它將使學生運用數(shù)學知識解決實際問題能力提高到一個新的水平。而在老師們的教學實踐中,由于在進行用方程解題時格式非常重要,因此往往老師們教學時都會特別強調格式??墒菑膶W生的后續(xù)學習來看,我慢慢發(fā)現(xiàn),其實在教學這一部分知識時,老師要注重學生對數(shù)量關系的理解,也就是說要加強對學生的用含字母的式子表示數(shù)量的訓練,也就是寫代數(shù)式的訓練。因為這是列方程的基礎。所以,在這里教師一定要向學生強調并反復練習用含有字母的式子表示數(shù)量,讓學生明白以往學習的所有數(shù)量關系在用含有字母的式子表示數(shù)量中都能用到。如:原來有100元,用掉x元,一樣的要用減法求還剩下多少錢,買了3個練習本,每個a元,一樣的用乘法來求一共要多少錢。讓學生在這樣的大量的練習和強化中,知道含有字母的式子的數(shù)量關系和以前是一樣的,只是現(xiàn)在所用的符號不一樣,其實,從廣義上來講,字母是一種符號,數(shù)字也是一種符號。
方程是什么,教材中是這樣說的,含有未知數(shù)的等式叫做方程。其實,這只是從方程的表現(xiàn)形式來給方程下定義。也就是說,從表象上來說,如果一個式子是一個等式,并且含有未知數(shù),我們就說這個式子是方程。但是,從數(shù)學的本質上來說,方程的意義是什么呢?我們每個人都能夠熟練地列方程解決問題,那么,在你列方程解決問題時,你每次抓住的核心是什么呢?是等量關系。所以,方程最本質的教學意義應是同一個量(或相等的量)用不同的形式去表達。但很多時候,老師們在教學方程的意義時,往往只研究了方程的表面形式,也就是書上所說的:含有未知數(shù)的等式叫方程,所以,老師們一般都是從等式入手,讓學生在認識等式的基礎上引入未知數(shù),然后告訴學生,象這樣的含有未知數(shù)的'等式叫方程。這樣一節(jié)課教下來,學生除了會判斷一個關系式是不是方程,還知道了什么呢?這樣的學習對于后面的列方程解決問題真的有幫助嗎?我想,每個人靜下心來想想,應該都會有答案。
新教材對于解方程的安排是變動非常大的。以前我們是根據(jù)四則運算各部分之間的關系來解方程。一開始時,還不和學生說解方程,叫求未知數(shù)x。而現(xiàn)在的教材編排時是根據(jù)等式的性質來解,當然,在教材上并沒有歸納出等式的性質,畢竟,在學生的小學階段,只要讓學生明白,在等式的兩邊同時加、減、乘和除以同一個數(shù),等式仍然成立,這并不是完整意義上的等式的性質。從學生的學習上來看,我覺得學生是比較容易接受這種方法的,特別是比較簡單的方程,學生只要明白了要把誰抵消,怎么抵消,基本上問題不大。不過,到了稍微復雜的方程出現(xiàn)了一些問題,這也許是我在教學這一部分內容時,因為總是考慮到學生不喜歡列方程(以往的學生都有這個問題,可能就是覺得方程的格式繁瑣,好像步驟也不少,學生總不喜歡),所以,我就想怎么讓學生少寫點字,所以,在具體的書寫格式和步驟上,和教材稍微有點不同,我沒有象教材那樣寫出怎樣應用等式的性質的那一步,而是讓學生直接寫出這一步的結果,以至于到了后面,有部分學生就出現(xiàn)了一些問題,特別是象5(x+3)=55這樣的方程,學生掌握得比較差,也可能是學生在用含有字母的式子表示數(shù)量時,還是沒有很好地建立這樣的一個式子是一個整體,表示一個數(shù)量這樣的概念,盡管也進行了一些強調。另一個方面就是具體的步驟可能也對學生有影響,所以,我個人認為,可能讓學生按照書上的步驟來寫盡管麻煩一點,但對于學生理清思路可能更有幫助。
總的來說,我覺得簡易方程這個單元,只要讓學生有很好地用字母或含有字母的式子表示數(shù)的基礎,再加上對方程的本質意義有清晰的理解,知道怎樣解方程,其他的應該都不是問題,畢竟,上面的這些都是為列方程解決問題打基礎?;A打好了,后面的問題就都能能迎刃而解了。
解簡易方程的教學反思篇二
在通讀教參時我初步感受到:簡易方程太容易了,學生一學肯定能掌握好。本單元引入等式性質進行教學解方程的方法,簡單的一句話,只要記住同加、同減、同乘、同除就行了,這有什么難的。
看來數(shù)學不能只站在某一個點上做“井底之蛙”的狹隘的教學,教師不僅僅從本單元、本年級、本學段和小學范疇內分析把握教學內容,更應該從學生發(fā)展和為學生發(fā)展服務的意識上把握教學內容。
在課堂上學生多次通過觀察就發(fā)現(xiàn)未知數(shù)的值是多少,但卻還要把煩瑣的過程寫出來。
例如:
x+1.2=8,
解:x+1.2-1.2=8-1.2
x=6.8
在寫過程時學生習慣根據(jù)加、減、乘、除運算之間的關系來寫,面對如上的繁雜過程接受的緩慢,無奈。
本單元的教學使我對新教材和新課標又加深了認識,也許當完整的教學完本單元的知識時又會有新的理解和收獲。
解簡易方程的教學反思篇三
教材第65頁例1。練習十二的第1——3題。
1.學生能根據(jù)等式的基本性質解形如ax±b=c的方程,初步學會列方程解決一些簡單的實際問題。
2.培養(yǎng)學生抽象概括的能力,發(fā)展學生思維靈活性,進一步提高學生的分析能力。
3.學生感受數(shù)學與現(xiàn)實生活的聯(lián)系,培養(yǎng)學生的數(shù)學運用意識與規(guī)范書寫和自覺檢驗的習慣。
掌握解形如ax±b=c方程的解法。
正確找出數(shù)量間的相等關系,列出方程。
一、復習鋪墊:
1.解方程。
x-2.5=10 0. 4x=12 3.2+x=40
2.根據(jù)下列句子說出其數(shù)量間相等的關系。
1)女生比男生人數(shù)的3倍少10人。
2)這個月比上個月水電費的2倍多200元。
二、情景導入:
同學們見過足球吧?(出示1個足球)
三、探究新知:
老師可以用線路圖表示幫助學生分析題中的等量關系。
2.請學生依據(jù)等量關系式列出方程;還有另外的學生找到另外的等量關系式,列方程。
3.師:大家依據(jù)不同的等量關系列出較復雜的方程,怎樣解答呢?今天我們就來學習“稍復雜的方程”。(板書課題)
4.探究求解過程。
2)強調:把2x看作一個整體,先求出2x等于多少,再求出x等于多少。
3)最后求出 x=12,還要檢驗12是不是這個方程的解。(學生在黑板上展示解方程的步驟)
4)2x-20=4 這樣的方程能轉化成我們原來學過的簡單的方程再解答嗎?(在黑板上展示方程的解法步驟)
5)師:同學們真了不起,這幾個同學解答較復雜的方程都是先轉化成簡單的方程,然后用學過的知識去解決。請同學們不要忘記,最后要檢驗結果是否正確。
5.大家在用方程解決問題的時候,有什么共同特點嗎?步驟是什么呢?
(生答完特點后,師生共同總結列方程解決問題的步驟:
① 弄清題意,找出未知數(shù)用x表示;
② 分析、找出數(shù)量間的相等關系,列方程;
③ 解方程;
④ 檢驗并寫答語。)
四、鞏固拓展:
2.p66第2題
五、全課總結:
本節(jié)課你有什么收獲?
作業(yè):p66 3
板書設計: 稍復雜的方程
例1 解:設共有x塊黑色皮。
黑色皮塊數(shù)x2-4=白色皮塊數(shù)
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
答:共有12塊黑色皮。
課后小記:這節(jié)課由于有了前面的幾節(jié)課對等量關系的訓練,在根據(jù)老師出示的線段圖,學生很快就找到了等量關系,列出了方程,方程的求解過程就是本節(jié)課的重點內容,一定要反復的請學生說,達到都會的結果。
解簡易方程的教學反思篇四
義務教育小學階段五年級數(shù)學上冊第五單元《簡易方程》在解簡易方程呈現(xiàn)五個例題。
為了便于給出解方程全過程的直觀展示,例題中借助三幅天平演示圖,展現(xiàn)了解方程的完整思考過程,這一點值得稱道,對于學生來說,這樣的圖示剖析,有助于學生自我探究理解,學習解簡易方程,從而學會解簡易方程的方法。
從學習心理學來講,學生在接觸新知識點的第一印象極為重要,第一次學習新知,是由不知到知,由不懂到懂而邁出的重要第一步。這一步的踏出對學生而言異常重要。第一次是新的,大腦對新知的接受是處于興奮狀態(tài),此時的理解記憶刻痕是最深的,無論到的是直,是斜,一旦留下,再想更改那就難上加難。作為老師一定要重視學生的第一次接觸新知,“課上損失課外補”更是事倍功半。
學材的編排著實讓我有點撓頭,明明能夠一目了解,通過閱讀自學就能搞定的解方程規(guī)范,這樣一個基礎性的知識點,非要放在例3才有完整呈現(xiàn),在實際的課堂教學中有點不得勁兒,也有些不符合學生學習的認知規(guī)律。
解簡易方程的教學反思篇五
現(xiàn)行的教法和初中類似,即:解方程時利用方程兩邊同時加上或減去一個數(shù)或同時乘以或除以一個不為零的數(shù)方程兩邊的值不變,但具體解題中與初中不同的是不提移項與合并同類項,思想方法卻是相同的。
在教學中發(fā)現(xiàn)小學生對這種方法掌握較困難,主要表現(xiàn)在:
第一,用字母表示數(shù)不好接受,不易理解,也不習慣;
第二,用代數(shù)式表示一個得數(shù)或結果不理解;
第三,字母與數(shù),字母與字母之間的簡單運算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個數(shù)。
我們知道算式思維與方程思維是兩種不同的思考方法,在一些復雜的問題中用算式很難解出,用方程卻簡單的多,現(xiàn)行小學教材中有提升方程教學的.意思,旨在培養(yǎng)學生的思考能力,便于與初中銜接。
教學實踐中我們發(fā)現(xiàn)通過練習學生還是可以掌握的很好的。
解簡易方程的教學反思篇六
在本課教學中,我主要采用小組合作學習,討論的方式,讓學生探究新知識,效果較好。
出示例題2,小組合作學習,討論:①你是怎樣理解圖意的?②你是如何列方程的?③你是根據(jù)什么解方程的?④怎樣檢驗方程的解是否正確?然后班交流討論,展示學生的練習。指名回答,說說自己的分析。你對他的分析有什么要問的嗎?教師總結解題關鍵。
教學例3時,讓學生觀察、分析,這道題與前面的練習題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個人解答)學生找出解題關鍵,培養(yǎng)一題多解的習慣與能力。
最后讓學生做全課總結:今天學習了什么知識?解方程的關鍵是什么?
18-2x=215÷3+4x=25
鞏固知識,激發(fā)興趣。
解簡易方程的教學反思篇七
x + 4 = 20
x = 20-4
依據(jù)運算之間的關系:一個加數(shù)等于和減另一個加數(shù)。
x + 4 = 20
x + 4-4=20-4
依據(jù)等式的基本性質1:等式兩邊加上或減去相等的數(shù),等式不變。
改革的原因(摘自教學參考書):
新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據(jù)總是加減運算的關系或乘除運算之間的關系,這實際上是用算術的思路求未知數(shù)。到了中學又要另起爐灶,引入等式的基本性質或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數(shù)起步教學的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標準》的要求,從小學起就引入等式的基本性質,并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學數(shù)學教學的銜接。
從這我們不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。
那么,小學生學這樣的方法,實際操作中會出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學過程中真的出現(xiàn)了問題 。
新教材認為,利用等式基本性質解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結為等式兩邊同時減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結為等式兩邊同時除以(乘上)a。這就是所謂相比原來方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個相應的調整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學生還沒有學習正負數(shù)的四則運算,利用等式的基本性質解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因為其本質是分式方程,依據(jù)等式的基本性質解需要先去分母,也不適合在小學階段學習。
我認為為了要運用等式基本性質,卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認為并不影響學生列方程解決實際問題。因為當需要列出形如a-x=b或ax=b的方程時,總是要求學生根據(jù)實際問題的數(shù)量關系,列成形如x+b=a或bx=a的方程。但我認為,這樣的處理方法,有時更會無法避免地直接和方程思想發(fā)生矛盾。
合理的做法應是設桃子每千克x元,從順向思考,列出方程為2.53-5x=0.5。然而,按新教材的編排,因為學生現(xiàn)在不會解這樣的方程,所以要根據(jù)數(shù)量關系,轉列成5x+0.5=2.53之類的方程。又如:課本第62頁中的爸爸比小明大28歲,小明х歲,爸爸40歲。很多學生根據(jù)爸爸比小明大28歲列出40-х=28,可是無法求解,所以又轉成х+28=40。
我們不難看出,根據(jù)現(xiàn)實情境列方程解決問題,x當作減數(shù)、當作除數(shù),應當是很常見、很必要的現(xiàn)象。要學生學會解這些方程,是正常的教學要求,這是不應該回避的,否則,我們的教學就會顯得片面和狹隘。
教材要求,在學生用等式基本性質解方程時,方程的變形過程應該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。
【本文地址:http://www.aiweibaby.com/zuowen/2000181.html】