熱門高二下數(shù)學(xué)教案版電子書(模板19篇)

格式:DOC 上傳日期:2023-10-28 06:36:16
熱門高二下數(shù)學(xué)教案版電子書(模板19篇)
時(shí)間:2023-10-28 06:36:16     小編:MJ筆神

教案的編寫需要教師對教材內(nèi)容的深入理解和教學(xué)經(jīng)驗(yàn)的積累。教案的編寫要注重教學(xué)資源的充分利用和多樣化呈現(xiàn)。感謝大家的關(guān)注和支持,在這里與大家分享一些教案范文,希望對你有所幫助。

高二下數(shù)學(xué)教案版電子書篇一

根據(jù)本學(xué)期學(xué)校教務(wù)處工作方針與計(jì)劃,以提高數(shù)學(xué)學(xué)科教學(xué)質(zhì)量為核心,全面提高自身業(yè)務(wù)水平,努力做到:求真務(wù)實(shí)、保質(zhì)高效,力求突破,促進(jìn)自身的全面發(fā)展。

具體工作計(jì)劃如下:

1、認(rèn)真學(xué)習(xí)新課標(biāo),轉(zhuǎn)變教學(xué)理念加強(qiáng)自身教育教學(xué)的理論學(xué)習(xí)。以學(xué)習(xí)新課標(biāo)為主要的學(xué)習(xí)內(nèi)容,組織切實(shí)有效的學(xué)習(xí)活動(dòng),用先進(jìn)的教育理念支撐深化教育改革,改變傳統(tǒng)的教學(xué)模式。

2、轉(zhuǎn)變教學(xué)方式轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式教師要以新理念指導(dǎo)自己的教學(xué)工作,牢固樹立學(xué)生是學(xué)習(xí)的主人,以平等、寬容的態(tài)度對待學(xué)生,在溝通和"對話"中實(shí)現(xiàn)師生的共同發(fā)展,努力建立互動(dòng)的師生關(guān)系。本學(xué)期要繼續(xù)以改變學(xué)生的學(xué)習(xí)方式為主,提倡發(fā)現(xiàn)性學(xué)習(xí)、參與性學(xué)習(xí)和實(shí)踐性學(xué)習(xí)。

3、改變備課方式,提高備課質(zhì)量

例題的選擇,習(xí)題的配備與要求,可根據(jù)每個(gè)班級學(xué)生的實(shí)際,靈活處理。重視教學(xué)過程的反思,盡可能做到每節(jié)課后教師要反思教學(xué)過程,及時(shí)地把教學(xué)中點(diǎn)點(diǎn)滴滴的感受寫下來,重視"二備"和反思,要從深層次上去考慮自己的教學(xué)工作。同時(shí),根據(jù)班級的具體情況,適當(dāng)進(jìn)行調(diào)整,以適應(yīng)學(xué)生的實(shí)際。

情況為標(biāo)準(zhǔn),讓學(xué)生學(xué)會并且掌握,不搞教條主義和形式主義。教案應(yīng)體現(xiàn)知識體系、思維方法、訓(xùn)練應(yīng)用,以及滲透運(yùn)用等,要對重點(diǎn)、難點(diǎn)有分析和解決方法。作業(yè)要求分組,學(xué)生可根據(jù)自己的情況完成相應(yīng)的作業(yè),并注重作業(yè)反饋。

教學(xué)工作計(jì)劃的制定能有效提升自己的.教學(xué)能力,改良教學(xué)方法和掌握學(xué)生的學(xué)習(xí)情況,從而實(shí)現(xiàn)本學(xué)期的教學(xué)目的。

高二下數(shù)學(xué)教案版電子書篇二

學(xué)習(xí)目標(biāo):

1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法

2、能敘述隨機(jī)變量的定義

3、能說出隨機(jī)變量與函數(shù)的關(guān)系,

4、能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示

重點(diǎn):能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示

難點(diǎn):隨機(jī)事件概念的透徹理解及對隨機(jī)變量引入目的的認(rèn)識:

環(huán)節(jié)一:隨機(jī)變量的定義

1.通過生活中的一些隨機(jī)現(xiàn)象,能夠概括出隨機(jī)變量的定義

2能敘述隨機(jī)變量的定義

3能說出隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

一、閱讀課本33頁問題提出和分析理解,回答下列問題?

1、了解一個(gè)隨機(jī)現(xiàn)象的規(guī)律具體指的是什么?

2、分析理解中的兩個(gè)隨機(jī)現(xiàn)象的隨機(jī)試驗(yàn)結(jié)果有什么不同?建立了什么樣的對應(yīng)關(guān)系?

總結(jié):

3、隨機(jī)變量

(1)定義:

這種對應(yīng)稱為一個(gè)隨機(jī)變量。即隨機(jī)變量是從隨機(jī)試驗(yàn)每一個(gè)可能的結(jié)果所組成的

到的映射。

(2)表示:隨機(jī)變量常用大寫字母.等表示.

(3)隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

函數(shù)隨機(jī)變量

自變量

因變量

因變量的范圍

相同點(diǎn)都是映射都是映射

環(huán)節(jié)二隨機(jī)變量的應(yīng)用

1、能正確寫出隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機(jī)變量的描述隨機(jī)事件

例1:已知在10件產(chǎn)品中有2件不合格品?,F(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機(jī)變量的學(xué)案.這是一個(gè)隨機(jī)現(xiàn)象。(1)寫成該隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機(jī)變量來描述上述結(jié)果。

例2連續(xù)投擲一枚均勻的硬幣兩次,用x表示這兩次正面朝上的次數(shù),則x是一個(gè)隨機(jī)變

量,分別說明下列集合所代表的隨機(jī)事件:

(1){x=0}(2){x=1}

(3){x2}(4){x0}

變式:連續(xù)投擲一枚均勻的硬幣三次,用x表示這三次正面朝上的次數(shù),則x是一個(gè)隨機(jī)變量,x的可能取值是?并說明這些值所表示的隨機(jī)試驗(yàn)的結(jié)果.

練習(xí):寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)變量的結(jié)果。

(1)從學(xué)校回家要經(jīng)過5個(gè)紅綠燈路口,可能遇到紅燈的次數(shù);

小結(jié)(對標(biāo))

高二下數(shù)學(xué)教案版電子書篇三

style="color:#125b86">

教材分析

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

學(xué)情分析

通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

教學(xué)目標(biāo)

1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。

難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

高二下數(shù)學(xué)教案版電子書篇四

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

1、知識與技能:

(1)推廣角的概念、引入大于角和負(fù)角;

(2)理解并掌握正角、負(fù)角、零角的定義;

(3)理解任意角以及象限角的概念;

(4)掌握所有與角終邊相同的角(包括角)的表示方法;

(5)樹立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;

(6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣;

(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識。

2、過程與方法:

通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個(gè)終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。

3、情態(tài)與價(jià)值:

通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個(gè)新的認(rèn)識,即有正角、負(fù)角和零角之分.角的概念推廣以后,知道角之間的關(guān)系.理解掌握終邊相同角的表示方法,學(xué)會運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識事物。

教學(xué)重難點(diǎn)

重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。

難點(diǎn):終邊相同的角的表示。

教學(xué)工具

投影儀等。

教學(xué)過程

【創(chuàng)設(shè)情境】

我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時(shí)轉(zhuǎn)不到一周,有時(shí)轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。

【探究新知】

1.初中時(shí),我們已學(xué)習(xí)了角的概念,它是如何定義的呢?

[展示投影]角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形。如圖1.1-1,一條射線由原來的位置,繞著它的端點(diǎn)o按逆時(shí)針方向旋轉(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開始時(shí)的射線叫做角的始邊,ob叫終邊,射線的端點(diǎn)o叫做叫a的頂點(diǎn)。

[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時(shí)成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時(shí)針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時(shí)針方向旋轉(zhuǎn)所形成的角叫負(fù)角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角(zeroangle)。

3.學(xué)習(xí)小結(jié):

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。

課后習(xí)題

作業(yè):

1、習(xí)題1.1a組第1,2,3題.

2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進(jìn)一步理解具有相同終邊的角的特點(diǎn).

板書

高二下數(shù)學(xué)教案版電子書篇五

1.把握菱形的判定.

2.通過運(yùn)用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好.

4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.

觀察分析討論相結(jié)合的.方法

1.教學(xué)重點(diǎn):菱形的判定方法.

2.教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用.

1課時(shí)

教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫圖工具

教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥

復(fù)習(xí)提問

1.敘述菱形的定義與性質(zhì).

2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點(diǎn)到一邊距離為xxxxxxxx.

引入新課

師問:要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個(gè)條件?

生答:兩個(gè).

師問:哪兩個(gè)?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學(xué)生口述證實(shí))

證實(shí)時(shí)讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線,但都不是菱形.

菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):

注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.

求證:四邊形是菱形(按教材講解).

總結(jié)、擴(kuò)展

1.小結(jié):

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.

2.思考題:已知:如圖4△中,,平分,,,交于.

求證:四邊形為菱形.

教材p159中9、10、11、13

高二下數(shù)學(xué)教案版電子書篇六

1.掌握常用基本不等式,并能用之證明不等式和求最值;

2.掌握含絕對值的不等式的性質(zhì);

本章知識點(diǎn)

幾類常見的問題

(一) 含參數(shù)的不等式的解法

例1解關(guān)于x的不等式 .

例2解關(guān)于x的不等式 .

例3解關(guān)于x的不等式 .

例4解關(guān)于x的不等式

例5 滿足 的x的集合為a;滿足 的x

的集合為b 1 若ab 求a的取值范圍 2 若ab 求a的取值范圍 3 若ab為僅含一個(gè)元素的集合,求a的值.

(二)函數(shù)的最值與值域

例6 求函數(shù) 的最大值,下列解法是否正確?為什么?

解一: ,

解二: 當(dāng) 即 時(shí),

例7 若 ,求 的最值。

例8 已知x , y為正實(shí)數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.

例9 設(shè) 且 ,求 的最大值

例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。

1.

2. , 若 ,求a的取值范圍

3.

4.

5.當(dāng)a在什么范圍內(nèi)方程: 有兩個(gè)不同的負(fù)根

6.若方程 的兩根都對于2,求實(shí)數(shù)m的范圍

7.求下列函數(shù)的最值:

1

2

8.1 時(shí)求 的最小值, 的最小值

2設(shè) ,求 的最大值

3若 , 求 的最大值

4若 且 ,求 的最小值

9.若 ,求證: 的最小值為3

10.制作一個(gè)容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和

高各取多少時(shí),用料最省?(不計(jì)加工時(shí)的損耗及接縫用料)

高二下數(shù)學(xué)教案版電子書篇七

(1)了解周期現(xiàn)象在現(xiàn)實(shí)中廣泛存在;(2)感受周期現(xiàn)象對實(shí)際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡單的實(shí)際問題的周期;(5)能利用周期函數(shù)定義進(jìn)行簡單運(yùn)用。

2、過程與方法

通過創(chuàng)設(shè)情境:單擺運(yùn)動(dòng)、時(shí)鐘的圓周運(yùn)動(dòng)、潮汐、波浪、四季變化等,讓學(xué)生感知周期現(xiàn)象;從數(shù)學(xué)的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實(shí)踐中加以應(yīng)用。

3、情感態(tài)度與價(jià)值觀

通過本節(jié)的學(xué)習(xí),使同學(xué)們對周期現(xiàn)象有一個(gè)初步的認(rèn)識,感受生活中處處有數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生學(xué)好數(shù)學(xué)的信心,學(xué)會運(yùn)用聯(lián)系的觀點(diǎn)認(rèn)識事物。

高二下數(shù)學(xué)教案版電子書篇八

(1)認(rèn)知目標(biāo)

理解并掌握分式的乘除法法則,能進(jìn)行簡單的分式乘除法運(yùn)算,能解決一些與分式乘除有關(guān)的實(shí)際問題。

(2)技能目標(biāo)

經(jīng)歷從分?jǐn)?shù)的乘除法運(yùn)算到分式的乘除法運(yùn)算的過程,培養(yǎng)學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認(rèn)識。

(3)情感態(tài)度與價(jià)值觀

教學(xué)中讓學(xué)生在主動(dòng)探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識的同時(shí)感受探索的樂趣和成功的體驗(yàn)。

重點(diǎn):運(yùn)用分式的乘除法法則進(jìn)行運(yùn)算。

難點(diǎn):分子、分母為多項(xiàng)式的分式乘除運(yùn)算。

(一)提出問題,引入課題

俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實(shí)際出發(fā)提出現(xiàn)實(shí)生活中的問題:

問題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。

問題2:求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。

從實(shí)際出發(fā),引出分式的乘除的實(shí)在存在意義,讓學(xué)生感知學(xué)習(xí)分式的'乘法和除法的實(shí)際需要,從而激發(fā)學(xué)生興趣和求知欲。

(二)類比聯(lián)想,探究新知

從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。

解后總結(jié)概括:

(1)式是什么運(yùn)算?依據(jù)是什么?

(2)式又是什么運(yùn)算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。

(分式的乘除法法則)

乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

(三)例題分析,應(yīng)用新知

師生活動(dòng):教師參與并指導(dǎo),學(xué)生獨(dú)立思考,并嘗試完成例題。

p11的例1,在例題分析過程中,為了突出重點(diǎn),應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。p11例2是分子、分母為多單項(xiàng)式的分式乘除法則的運(yùn)用,為了突破本節(jié)課的難點(diǎn)我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯(cuò)易漏的環(huán)節(jié),學(xué)會解題的方法。

(四)練習(xí)鞏固,培養(yǎng)能力

p13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。

師生活動(dòng):教師出示問題,學(xué)生獨(dú)立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過程。

通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達(dá)到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。

(五)課堂小結(jié),回扣目標(biāo)

引導(dǎo)學(xué)生自主進(jìn)行課堂小結(jié):

1、本節(jié)課我們學(xué)習(xí)了哪些知識?

2、在知識應(yīng)用過程中需要注意什么?

3、你有什么收獲呢?

師生活動(dòng):學(xué)生反思,提出疑問,集體交流。

(六)布置作業(yè)

教科書習(xí)題6.2第1、2(必做)練習(xí)冊p(選做),我設(shè)計(jì)了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對本節(jié)課知識的一個(gè)延伸。

高二下數(shù)學(xué)教案版電子書篇九

【自主梳理】

1.函數(shù)單調(diào)性的定義:

(1)一般地,設(shè)函數(shù)的定義域?yàn)閍,區(qū)間.

如果對于區(qū)間i內(nèi)的任意兩個(gè)值,當(dāng)時(shí),都有_______________,那么就說在區(qū)間i上是單調(diào)增函數(shù),i稱為的___________________.

如果對于區(qū)間i內(nèi)的任意兩個(gè)值,當(dāng)時(shí),都有_______________,那么就說在區(qū)間i上是單調(diào)減函數(shù),i稱為的___________________.

(2)如果函數(shù)在區(qū)間i上是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說在區(qū)間i上具有___________性,單調(diào)增區(qū)間或單調(diào)減區(qū)間統(tǒng)稱為____________________.

2.復(fù)合函數(shù)的單調(diào)性:

對于函數(shù)如果當(dāng)在區(qū)間上和在區(qū)間上同時(shí)具有單調(diào)性,則復(fù)合函數(shù)在區(qū)間上具有__________,并且具有這樣的規(guī)律:___________________________.

3.求函數(shù)單調(diào)區(qū)間或證明函數(shù)單調(diào)性的方法:

(1)______________;(2)____________________;(3)__________________.

【自我檢測】

1.函數(shù)在r上是減函數(shù),則的取值范圍是___________.

2.函數(shù)在上是_____函數(shù)(填增或減).

3.函數(shù)的單調(diào)區(qū)間是_____________________.

4.函數(shù)在定義域r上是單調(diào)減函數(shù),且,則實(shí)數(shù)a的取值范圍是________________________.

5.已知函數(shù)在區(qū)間上是增函數(shù),則的大小關(guān)系是_______.

6.函數(shù)的單調(diào)減區(qū)間是___________________.

【例1】填空題:

(1)若函數(shù)的單調(diào)增區(qū)間是,則的遞增區(qū)間是_________.

(2)函數(shù)的單調(diào)減區(qū)間是________________.

(3)若上是增函數(shù),則a的取值范圍是_____________.

(4)若是r上的減函數(shù),則a的取值范圍是_________.

【例2】求證:函數(shù)在區(qū)間上是減函數(shù).

【例3】已知函數(shù)對任意的,都有,且當(dāng)時(shí),.

(1)求證:是r上的增函數(shù);

(2)若,解不等式.

1.函數(shù)單調(diào)減區(qū)間是_________________.

2.若函數(shù)在區(qū)間上具有單調(diào)性,則實(shí)數(shù)a的取值范圍是______.

3.已知函數(shù)是定義在上的'增函數(shù),且,則實(shí)數(shù)x的取值范圍是_________________________.

4.已知在內(nèi)是減函數(shù),,且,設(shè),,則a,b的大小關(guān)系是_________________.

5.若函數(shù)上都是減函數(shù),則上是______.(填增函數(shù)或減函數(shù))

6.函數(shù)的遞減區(qū)間是________________.

7.已知函數(shù)上單調(diào)遞減,則a的取值范圍是_________.

8.已知函數(shù)滿足對任意的,都有成立,則a的取值范圍是_________.

9.確定函數(shù)的單調(diào)性.

10.已知函數(shù)是定義在上的減函數(shù),且滿足,,若,求的取值范圍.

錯(cuò)題卡題號錯(cuò)題原因分析

高二數(shù)學(xué)教案:數(shù)的單調(diào)性教案(答案)

一、課前準(zhǔn)備:

【自主梳理】

1.(1),單調(diào)增區(qū)間,,單調(diào)減區(qū)間,

(2)單調(diào),單調(diào)區(qū)間

2.單調(diào)性,同則增異則減

3.(1)定義法(2)圖象法(3)導(dǎo)函數(shù)法

【自我檢測】

1.2.增3.和4.

5.6.

二、課堂活動(dòng):

【例1】

(1)(2)(3)(4)

【例2】證明:設(shè)

【例3】(1)證明:

(2)解:

三、課后作業(yè)

1.2.3.4.

5.減函數(shù)6.7.8.

9.解:定義域?yàn)?,任取,?/p>

10.解:

高二下數(shù)學(xué)教案版電子書篇十

理解并掌握雙曲線的幾何性質(zhì),并能從雙曲線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)出這些性質(zhì),并能具體估計(jì)雙曲線的形狀特征。

二、預(yù)習(xí)內(nèi)容

1、雙曲線的幾何性質(zhì)及初步運(yùn)用。

類比橢圓的幾何性質(zhì)。

2。雙曲線的漸近線方程的導(dǎo)出和論證。

觀察以原點(diǎn)為中心,2a、2b長為鄰邊的'矩形的兩條對角線,再論證這兩條對角線即為雙曲線的漸近線。

三、提出疑惑

同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中

課內(nèi)探究

1、橢圓與雙曲線的幾何性質(zhì)異同點(diǎn)分析

2、描述雙曲線的漸進(jìn)線的作用及特征

3、描述雙曲線的離心率的作用及特征

4、例、練習(xí)嘗試訓(xùn)練:

例1。求雙曲線9y2—16x2=144的實(shí)半軸長和虛半軸長、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。

解:

解:

5、雙曲線的第二定義

1)。定義(由學(xué)生歸納給出)

2)。說明

(七)小結(jié)(由學(xué)生課后完成)

將雙曲線的幾何性質(zhì)按兩種標(biāo)準(zhǔn)方程形式列表小結(jié)。

作業(yè):

1。已知雙曲線方程如下,求它們的兩個(gè)焦點(diǎn)、離心率e和漸近線方程。

(1)16x2—9y2=144;

(2)16x2—9y2=—144。

2。求雙曲線的標(biāo)準(zhǔn)方程:

(1)實(shí)軸的長是10,虛軸長是8,焦點(diǎn)在x軸上;

(2)焦距是10,虛軸長是8,焦點(diǎn)在y軸上;

曲線的方程。

點(diǎn)到兩準(zhǔn)線及右焦點(diǎn)的距離。

高二下數(shù)學(xué)教案版電子書篇十一

1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。

2.掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。

體會直角坐標(biāo)系的作用。

能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。

新授課

啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。

多媒體、實(shí)物投影儀

一、復(fù)習(xí)引入:

情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。

情境2:運(yùn)動(dòng)會的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。

問題1:如何刻畫一個(gè)幾何圖形的位置?

問題2:如何創(chuàng)建坐標(biāo)系?

二、學(xué)生活動(dòng)

學(xué)生回顧

刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系

1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定

2、平面直角坐標(biāo)系

在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y)確定。

3、空間直角坐標(biāo)系

在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y,z)確定。

三、講解新課:

1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:

任意一點(diǎn)都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個(gè)點(diǎn)的'坐標(biāo)就能確定這個(gè)點(diǎn)的位置

2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)

四、數(shù)學(xué)運(yùn)用

例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點(diǎn)。

變式訓(xùn)練

變式訓(xùn)練

2、在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過點(diǎn)p的橢圓方程

例3已知q(a,b),分別按下列條件求出p的坐標(biāo)

(1)p是點(diǎn)q關(guān)于點(diǎn)m(m,n)的對稱點(diǎn)

(2)p是點(diǎn)q關(guān)于直線l:x-y+4=0的對稱點(diǎn)(q不在直線1上)

變式訓(xùn)練

用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。

思考

通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請求出該復(fù)合變換?

五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.平面直角坐標(biāo)系的意義。

2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。

高二下數(shù)學(xué)教案版電子書篇十二

1.掌握二項(xiàng)式定理和性質(zhì)以及推導(dǎo)過程。

2.利用二項(xiàng)式定理求二項(xiàng)展開式中的項(xiàng)的系數(shù)及相關(guān)問題。

3.使學(xué)生能把握數(shù)學(xué)問題中的整體與局部的關(guān)系,掌握分析與綜合,特殊和一般的數(shù)學(xué)思想。

教學(xué)重點(diǎn);二項(xiàng)展開式中項(xiàng)的系數(shù)的計(jì)算。

1、復(fù)習(xí)引入:

1.的展開式,項(xiàng)數(shù),通項(xiàng);

2.二項(xiàng)式系數(shù)的四個(gè)性質(zhì)。

2、例題

1.二項(xiàng)式定理及二項(xiàng)式系數(shù)性質(zhì)的簡單應(yīng)用:

例1(1)除以9的余數(shù)是_____________________

(2)=_______________

a.b.c.d.

(3)已知

則____________________

(4)如果展開式中奇數(shù)項(xiàng)的系數(shù)和為512,則這個(gè)展開式的第8項(xiàng)是()

a.b.c.d.

(5)若則等于()

a.b.c.d.

小結(jié)1.(1)注意二項(xiàng)式定理的正逆運(yùn)用;

(2)注意二項(xiàng)式系數(shù)的四個(gè)性質(zhì)的運(yùn)用。

2.二項(xiàng)展開式中項(xiàng)的系數(shù)計(jì)算:

例2(1)展開式中常數(shù)項(xiàng)等于_____________.

(2)在的展開式中x的系數(shù)為()

a.160b.240c.360d.800

(3)已知求:

小結(jié)2.(1)局部問題抓通項(xiàng);

(2)整體系數(shù)賦值法。

三、課堂練習(xí)

(1)展開式中,各系數(shù)之和是()

a.0b.1c.d.

(2)已知的.展開式中的系數(shù)為,常數(shù)的值是_________

(3)的展開式中的系數(shù)為______________-(用數(shù)字作答)

(4)若,則

a.1b.0c.2d.

四、課堂小結(jié)

五、作業(yè)

高二下數(shù)學(xué)教案版電子書篇十三

教材分析:

本學(xué)期我任教(3)班數(shù)學(xué),所選的教材是人民教育出版社職業(yè)教育中心編著的《數(shù)學(xué)(基礎(chǔ)版)》。該教材是在原有職業(yè)高中數(shù)學(xué)教材的基礎(chǔ)上,依據(jù)國家教育部新制定的《中等職業(yè)學(xué)校數(shù)學(xué)教學(xué)大綱(試行)》重新編寫的,具有以下特點(diǎn):

1、注重基礎(chǔ):

“大綱”對傳統(tǒng)的初等數(shù)學(xué)教育內(nèi)容進(jìn)行了精選,把理論上、方法上以及代生產(chǎn)與生活中得到廣泛應(yīng)用的知識作為各專業(yè)必學(xué)的基本內(nèi)容。根據(jù)“大綱”要求,把函數(shù)與幾何,以及研究函數(shù)與幾何的方法作為教材的核心內(nèi)容。

2、降低知識起點(diǎn)

多數(shù)中職學(xué)生對學(xué)過的數(shù)學(xué)知識需要復(fù)習(xí)與提高,才能順利進(jìn)入中職階段的數(shù)學(xué)學(xué)習(xí)。這套數(shù)學(xué)教材編寫從學(xué)生的實(shí)際出發(fā),提高中職學(xué)生的數(shù)學(xué)素質(zhì),使多數(shù)學(xué)生能完成“大綱”中規(guī)定的教學(xué)要求,以保證中職學(xué)生能達(dá)到高中階段的基本數(shù)學(xué)水準(zhǔn)。

3、增加較大的使用彈性

考慮中等職業(yè)學(xué)校專業(yè)的多樣性,各對數(shù)學(xué)能力的要求也不相同,教學(xué)要求給出了較大的選擇范圍,增加了教學(xué)的彈性。教材中給出了三個(gè)層次:一是必學(xué)的內(nèi)容分兩種教學(xué)要求(在教參中指出);二是教材中配備一些難度較大的習(xí)題,供學(xué)有余力的學(xué)生去做,培養(yǎng)這些學(xué)生的解題能力;三是編寫了選學(xué)內(nèi)容,選學(xué)內(nèi)容主要是深化基本內(nèi)容所學(xué)知識和應(yīng)用基本內(nèi)容解決實(shí)際問題的能力。

4、注重?cái)?shù)學(xué)應(yīng)用意識的培養(yǎng)

每章專設(shè)應(yīng)用一節(jié),列舉數(shù)學(xué)在生活實(shí)際、現(xiàn)代科學(xué)和生產(chǎn)中應(yīng)用的例子,培養(yǎng)學(xué)生用數(shù)學(xué)解決實(shí)際問題的意識和能力。

5、注重培養(yǎng)學(xué)生使用計(jì)算機(jī)工具的能力

在“大綱”中,要求培養(yǎng)學(xué)生使用基本計(jì)算工具的恩能夠里。這就要求學(xué)生掌握使用計(jì)數(shù)器的技能,所以在新教材中增加了用計(jì)數(shù)器做的練習(xí)題。有條件的學(xué)生還可以培養(yǎng)學(xué)生使用計(jì)算機(jī)技術(shù)。

教材內(nèi)容:

本學(xué)期使用的是第二冊的教材,內(nèi)容包括:平面解析幾何,立體幾何,排列、組合與二項(xiàng)式定理,概率與統(tǒng)計(jì)初步。

每章編寫結(jié)構(gòu):引言,正文(大節(jié)、小節(jié)、聯(lián)系、習(xí)題),復(fù)習(xí)問題和復(fù)習(xí)參考題,閱讀材料(數(shù)學(xué)文化)等。除個(gè)別標(biāo)注星號的'選學(xué)內(nèi)容外,都是必學(xué)內(nèi)容。

學(xué)生情況分析及教學(xué)對策:

課所涉及到的舊知識點(diǎn);對學(xué)生的要求以能處理簡單的操作題為主。另外,舒適的環(huán)境對學(xué)生的情緒也有挺大的影響,因而在教學(xué)過程中應(yīng)滲入環(huán)境教育,培養(yǎng)學(xué)生的環(huán)境保護(hù)意識。

教學(xué)進(jìn)度表

高二下數(shù)學(xué)教案版電子書篇十四

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩脁x解題,許多時(shí)候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用xx解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、

教學(xué)重點(diǎn)

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線xx解題

開門見山,提出問題

例題:

(1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。

(a)橢圓(b)雙曲線(c)線段(d)不存在

(2)已知?jiǎng)狱c(diǎn)m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是()。

(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的'學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長為,焦距為。以深化對概念的理解。

高二下數(shù)學(xué)教案版電子書篇十五

教學(xué)目標(biāo):

1、進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

2、在對一個(gè)數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;

3、進(jìn)一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。

教學(xué)重點(diǎn):

問題的提出與解決

教學(xué)難點(diǎn):

如何進(jìn)行問題的探究

教學(xué)方法:

啟發(fā)探究式

教學(xué)過程:

研究方向提示:

1、數(shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;

2、研究所給數(shù)列的項(xiàng)之間的關(guān)系;

3、研究所給數(shù)列的子數(shù)列;

4、研究所給數(shù)列能構(gòu)造的新數(shù)列;

5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;

6、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。

課堂小結(jié):

1、研究一個(gè)數(shù)列可以從哪些方面提出問題并進(jìn)行研究?

2、你最喜歡哪位同學(xué)的研究?為什么?

高二下數(shù)學(xué)教案版電子書篇十六

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

【教學(xué)重難點(diǎn)】

教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

教學(xué)難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。

【教學(xué)過程】

1.情景導(dǎo)入

教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

2.展示目標(biāo)、檢查預(yù)習(xí)

3、合作探究、交流展示

(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。

在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

(1)有兩個(gè)面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進(jìn)行分類

(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的`概念,分類以及表示。

(5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

(1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?

(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

高二下數(shù)學(xué)教案版電子書篇十七

1、地位、作用和特點(diǎn):

《xx》是高中數(shù)學(xué)課本第xx冊(x修)的第xx章“xx”的第xx節(jié)內(nèi)容。

本節(jié)是在學(xué)習(xí)了之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I?、生產(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是xx;特點(diǎn)之二是:xx。

教學(xué)目標(biāo):

根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

(1)知識目標(biāo):a、b、c

(2)能力目標(biāo):a、b、c

(3)德育目標(biāo):a、b

教學(xué)的重點(diǎn)和難點(diǎn):

(1)教學(xué)重點(diǎn):

(2)教學(xué)難點(diǎn):

基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動(dòng)學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)xx真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時(shí)留給學(xué)生充分的時(shí)間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:

導(dǎo)入新課新課教學(xué)反饋發(fā)展

學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的'能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。

1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個(gè)分析和推理的全過程。

2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授時(shí),可通過演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。

3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。

4、在指導(dǎo)學(xué)生解決問題時(shí),引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

(一)、課題引入:

教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實(shí)驗(yàn)。b、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。c、講述數(shù)學(xué)科學(xué)的有關(guān)情況。)激發(fā)學(xué)生的探究xx,引導(dǎo)學(xué)生提出接下去要研究的問題。

(二)、新課教學(xué):

1、針對上面提出的問題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過動(dòng)手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

(三)、實(shí)施反饋:

1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實(shí)例應(yīng)用。

以上是我對《xx》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的知識,并把它運(yùn)用到對的認(rèn)識,使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識,又學(xué)會了方法。

總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

高二下數(shù)學(xué)教案版電子書篇十八

2、2、3直線的參數(shù)方程

學(xué)習(xí)目標(biāo)

1.了解直線參數(shù)方程的條件及參數(shù)的意義;

2.初步掌握運(yùn)用參數(shù)方程解決問題,體會用參數(shù)方程解題的簡便性。

學(xué)習(xí)過程

復(fù)習(xí):

1、若由共線,則存在實(shí)數(shù),使得,

2、設(shè)為方向上的,則=︱︱;

3、經(jīng)過點(diǎn),傾斜角為的直線的普通方程為。

探究新知(預(yù)習(xí)教材p35~p39,找出疑惑之處)

1、選擇怎樣的參數(shù),才能使直線上任一點(diǎn)m的坐標(biāo)與點(diǎn)的坐標(biāo)和傾斜角聯(lián)系起來呢?由于傾斜角可以與方向聯(lián)系,與可以用距離或線段數(shù)量的大小聯(lián)系,這種方向有向線段數(shù)量大小啟發(fā)我們想到利用向量工具建立直線的參數(shù)方程。

如圖,在直線上任取一點(diǎn),則=,

而直線

的單位方向

向量

=(,)

因?yàn)椋源嬖趯?shí)數(shù),使得=,即有,因此,經(jīng)過點(diǎn)

,傾斜角為的直線的參數(shù)方程為:

2.方程中參數(shù)的幾何意義是什么?

應(yīng)用示例

例1.已知直線與拋物線交于a、b兩點(diǎn),求線段ab的長和點(diǎn)到a,b兩點(diǎn)的距離之積。(教材p36例1)

解:

例2.經(jīng)過點(diǎn)作直線,交橢圓于兩點(diǎn),如果點(diǎn)恰好為線段的中點(diǎn),求直線的方程.(教材p37例2)

解:

反饋練習(xí)

1.直線上兩點(diǎn)a,b對應(yīng)的參數(shù)值為,則=()

a、0b、

c、4d、2

2.設(shè)直線經(jīng)過點(diǎn),傾斜角為,

(1)求直線的參數(shù)方程;

(2)求直線和直線的交點(diǎn)到點(diǎn)的距離;

(3)求直線和圓的兩個(gè)交點(diǎn)到點(diǎn)的距離的和與積。

本節(jié)小結(jié)

1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?

答:1.了解直線參數(shù)方程的條件及參數(shù)的意義;

2.初步掌握運(yùn)用參數(shù)方程解決問題,體會用參數(shù)方程解題的簡便性。

學(xué)習(xí)評價(jià)

一、自我評價(jià)

你完成本節(jié)導(dǎo)學(xué)案的情況為()

a.很好b.較好c.一般d.較差

課后作業(yè)

1.已知過點(diǎn),斜率為的直線和拋物線相交于兩點(diǎn),設(shè)線段的`中點(diǎn)為,求點(diǎn)的坐標(biāo)。

2.經(jīng)過點(diǎn)作直線交雙曲線于兩點(diǎn),如果點(diǎn)為線段的中點(diǎn),求直線的方程

3.過拋物線的焦點(diǎn)作傾斜角為的弦ab,求弦ab的長及弦的中點(diǎn)m到焦點(diǎn)f的距離。

高二下數(shù)學(xué)教案版電子書篇十九

1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。

2.掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。

體會直角坐標(biāo)系的作用。

能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。

新授課

啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).

多媒體、實(shí)物投影儀

一、復(fù)習(xí)引入:

情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測定飛船在空中的.位置機(jī)器運(yùn)動(dòng)的軌跡。

情境2:運(yùn)動(dòng)會的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。

問題1:如何刻畫一個(gè)幾何圖形的位置?

問題2:如何創(chuàng)建坐標(biāo)系?

二、學(xué)生活動(dòng)

學(xué)生回顧

刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系

1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定

2、平面直角坐標(biāo)系

在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y)確定。

3、空間直角坐標(biāo)系

在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(x,y,z)確定。

三、講解新課:

1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:

任意一點(diǎn)都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置

2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)

四、數(shù)學(xué)運(yùn)用

例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點(diǎn)。

變式訓(xùn)練

思考

通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請求出該復(fù)合變換?

五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.平面直角坐標(biāo)系的意義。

2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。

六、課后作業(yè):

【本文地址:http://www.aiweibaby.com/zuowen/4178444.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔