高中數(shù)學必修教案設計(模板16篇)

格式:DOC 上傳日期:2023-11-06 03:59:07
高中數(shù)學必修教案設計(模板16篇)
時間:2023-11-06 03:59:07     小編:曼珠

在教案中,教師可以詳細安排每個教學環(huán)節(jié)的內容和方法。編寫教案時要充分利用現(xiàn)代教育技術,創(chuàng)造豐富多樣的教學環(huán)境和教學方式。以下是小編為大家收集的教案范文,僅供參考,希望能對大家編寫教案有所幫助。大家一起來看看吧!

高中數(shù)學必修教案設計篇一

1.教材內容及地位

2.教學重點

函數(shù)單調性的概念,判斷和證明簡單函數(shù)的單調性.

3.教學難點

函數(shù)單調性概念的生成,證明單調性的代數(shù)推理論證.

1.教學有利因素

2.教學不利因素

1.理解函數(shù)單調性的相關概念.掌握證明簡單函數(shù)單調性的方法.

為達成課堂教學目標,突出重點,突破難點,我們主要采取以下形式組織學習材料:

(一)創(chuàng)設情境,引入課題

問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?

設函數(shù)的定義域為,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調增區(qū)間(學生類比定義“遞減”,接著推出下圖,讓學生準確回答單調性.)

(二)引導探索,生成概念

問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?

(2)函數(shù)在區(qū)間上有何單調性?

預設:學生會不置可否,或者憑感覺猜測,可追問判定依據(jù).

問題3:(1)如何用數(shù)學符號描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?

(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?

拖動“拖動點”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.

(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?

拖動“拖動點”,觀察函數(shù)在區(qū)間上的圖象變化.

(4)已知,若有

能保證函數(shù)在區(qū)間上遞增嗎?

設計說明:可先請持贊同觀點的同學說明理由,再請持反對意見的學生畫出反駁,然后追問:無數(shù)個也不能保證函數(shù)遞增,那該怎么辦呢?若學生回答全部取完或任取,追問“總不能一個一個驗證吧?”

問題4:如何用數(shù)學語言準確刻畫函數(shù)在區(qū)間上遞增呢?

問題5:請你試著用數(shù)學語言定義函數(shù)在區(qū)間上是遞減的.

(三)學以致用,理解感悟

判斷題:你認為下列說法是否正確,請說明理由.(舉例或者畫圖)

(1)設函數(shù)的定義域為,若對任意,都有,則在區(qū)間上遞增;

(2)設函數(shù)的定義域為r,若對任意,且,都有,則是遞增的;

(3)反比例函數(shù)的單調遞減區(qū)間是.

例題:判斷并證明函數(shù)的單調性.

高中數(shù)學必修教案設計篇二

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.

等比數(shù)列性質請同學們類比得出.

【方法規(guī)律】。

1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學思想和方法.

2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)。

a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)。

3、在求等差數(shù)列前n項和的最大(小)值時,常用函數(shù)的思想和方法加以解決.

【示范舉例】。

例1:(1)設等差數(shù)列的`前n項和為30,前2n項和為100,則前3n項和為.

(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.

例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).

例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.

高中數(shù)學必修教案設計篇三

(1)掌握與()型的絕對值不等式的解法.

(2)掌握與()型的絕對值不等式的解法.

(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結合的能力;

教學重點:型的不等式的解法;

教學難點:利用絕對值的意義分析、解決問題.

教學過程設計

教師活動

學生活動

設計意圖

一、導入新課

【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?

【概括】

口答

絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.

二、新課

【提問】如何解絕對值方程.

【質疑】的解集有幾部分?為什么也是它的解集?

【練習】解下列不等式:

(1);

(2)

【設問】如果在中的,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.

所以,原不等式的解集是

【設問】如果中的是,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.

,或,

由得

由得

所以,原不等式的解集是

口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).

畫出數(shù)軸,思考答案

不等式的解集表示為

畫出數(shù)軸

思考答案

不等式的解集為

或表示為,或

筆答

(1)

(2),或

筆答

筆答

根據(jù)絕對值的意義自然引出絕對值方程()的解法.

由淺入深,循序漸進,在型絕對值方程的基礎上引出()型絕對值方程的解法.

針對解()絕對值不等式學生常出現(xiàn)的情況,運用數(shù)軸質疑、解惑.

落實會正確解出與()絕對值不等式的教學目標.

在將看成一個整體的關鍵處點撥、啟發(fā),使學生主動地進行練習.

繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤.

三、課堂練習

解下列不等式:

(1);

(2)

筆答

(1);

(2)

檢查教學目標落實情況.

四、小結

的解集是;的解集是

解絕對值不等式注意不要丟掉這部分解集.

五、作業(yè)

1.閱讀課本含絕對值不等式解法.

2.習題2、3、4

課堂教學設計說明

1.抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎.

2.在解與絕對值不等式中的關鍵處設問、質疑、點撥,讓學生融會貫通的掌握它們解法之間的內在聯(lián)系,以達到提高學生解題能力的目的.

3.針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.

高中數(shù)學必修教案設計篇四

1、知識與技能目標:認識平面直角坐標系,了解點與坐標的對應關系;

3、情感態(tài)度與價值觀目標:感受代數(shù)與幾何問題的相互轉換。體會品面直角坐標系在解決實際問題的作用,培養(yǎng)數(shù)學學習興趣。

重點:理解平面直角坐標中點與數(shù)的一一對應關系;

難點:根據(jù)坐標描出點的位置,以及坐標軸上的點的坐標特點。

教師準備四張大的紙質坐標格子。

一、溫故知新,導入新課。

游戲導入:上一節(jié)課我們學習了有序數(shù)對,大家學習積極性很高,今天老師先考考你們, 看你們掌握了多少。

我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學們先找準自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。

我們可以發(fā)現(xiàn),通過教室平面內的有序數(shù)對,可以唯一的確定與之對應的同學。

二、新課教學

課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標。例如點a數(shù)軸上的坐標是-4,點b數(shù)軸上的坐標是2;我們說坐標是3.5的點,也可以在數(shù)軸上唯一確定。

學生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小

b說我們可以每個點列一個數(shù)軸???

教師活動:引導學生思考,怎么才能用同一標準,方便的確定每一點的位置?

結合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?

得出結論:我們可以在平面內畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標系,水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的原點。

那有了這樣的平面直角坐標系,平面內的點就可以用之前學的有序數(shù)對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標是3,垂足n在y軸上的坐標是4,我們說a的坐標是3,縱坐標是4,有序數(shù)對(3,4)就叫做a的坐標,記作a(3,4)

教師提問2:同學們按照這種做法,在坐標紙上標出b、c、d的坐標。

教師活動:走下講臺,關注學生的匯坐標過程方法,指出學生出現(xiàn)問題的地方,并予以改正。

教師提問3:在橫縱坐標軸上各標一點e、f,問:坐標原點以及這兩點的坐標是什么?

教師活動:引導學生思考歸納坐標軸上的點的坐標的特點。

得出結論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。

三、課程鞏固

師生互動:與學生一起回憶平面直角坐標系的各部分的意義,平面內的點怎么對應坐標,以及坐標軸上的點的坐標特點。

“練一練”:

在黑板上貼出四張事先準備好的紙質坐標格子,在上面標出任意的abcdefg等點,每組我點一個按坐標序列對,對應的同學上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學生不能提示,提示一次扣2分。比賽看哪組學生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同學上黑板來描點。

教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學生不要氣餒,給予鼓勵,爭取下一次可以獲勝。

四、小結作業(yè):

思考平面直角坐標系中坐標與點的對應關系,如何由坐標值確定點的位置。下節(jié)課我們會探討這個問題。

平面直角坐標系:平面內畫兩條相互垂直、原點重合的數(shù)軸組成

水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;

豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;

兩坐標軸的交點為平面直角坐標系的原點。

高中數(shù)學必修教案設計篇五

(一)兩角和與差公式

(二)倍角公式

2cos2α=1+cos2α2sin2α=1-cos2α

注意:倍角公式揭示了具有倍數(shù)關系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。

注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。

(2)對公式會“正用”,“逆用”,“變形使用”;

(3)掌握“角的演變”規(guī)律,

(4)將公式和其它知識銜接起來使用。

重點難點

重點:幾組三角恒等式的應用

難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式

高中數(shù)學必修教案設計篇六

1、數(shù)學知識:掌握等比數(shù)列的概念,通項公式,及其有關性質;。

2、數(shù)學能力:通過等差數(shù)列和等比數(shù)列的類比學習,培養(yǎng)學生類比歸納的'能力;。

歸納——猜想——證明的數(shù)學研究方法;。

3、數(shù)學思想:培養(yǎng)學生分類討論,函數(shù)的數(shù)學思想。

重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學習等比數(shù)列;。

難點:等比數(shù)列的性質的探索過程。

教學過程:

1、問題引入:

前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。

問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?

(學生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。

已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。

師:事實上,等差數(shù)列的關鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

(第一次類比)類似的,我們提出這樣一個問題。

問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。

(這里以填空的形式引導學生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)。

2、新課:

1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。

師生共同簡要回顧等差數(shù)列的通項公式推導的方法:累加法和迭代法。

公式的推導:(師生共同完成)。

若設等比數(shù)列的公比為q和首項為a1,則有:

方法一:(累乘法)。

3)等比數(shù)列的性質:

下面我們一起來研究一下等比數(shù)列的性質。

通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質提供了一條思路:我們可以利用等差數(shù)列的性質,通過類比得到等比數(shù)列的性質。

問題4:如果{an}是一個等差數(shù)列,它有哪些性質?

(根據(jù)學生實際情況,可引導學生通過具體例子,尋找規(guī)律,如:

3、例題鞏固:

例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。

答案:1458或128。

例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.

(本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關鍵是對通項公式的理解)。

1、小結:

今天我們主要學習了有關等比數(shù)列的概念、通項公式、以及它的性質,通過今天的學習。

我們不僅學到了關于等比數(shù)列的有關知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。

2、作業(yè):

p129:1,2,3。

1、教學目標和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質是學生接下來學習等比數(shù)列的基礎,是必須要落實的;其次,數(shù)學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數(shù)列是在等差數(shù)列之后學習的因此對等比數(shù)列的學習必然要和等差數(shù)列結合起來,通過等比數(shù)列和等差數(shù)列的類比學習,對培養(yǎng)學生類比——猜想——證明的科學研究方法是有利的。這也就成了本節(jié)課的重點。

2、教學設計過程:本節(jié)課主要從以下幾個方面展開:

1)通過復習等差數(shù)列的定義,類比得出等比數(shù)列的定義;。

2)等比數(shù)列的通項公式的推導;。

3)等比數(shù)列的性質;。

有意識的引導學生復習等差數(shù)列的定義及其通項公式的探求思路,一方面使學生回顧舊。

知識,另一方面使學生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎。

在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規(guī)律,使學生體會觀察、類比、歸納等合情推理方法的應用。培養(yǎng)學生應用知識的能力。

在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設計,使學生產生不得不考慮通項公式的心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。

通過等差數(shù)列和等比數(shù)列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數(shù)列的性質,做好鋪墊。

等比性質的研究是本節(jié)課的高潮,通過類比。

關于例題設計:重知識的應用,具有開放性,為使學生更好的掌握本節(jié)課的內容。

高中數(shù)學必修教案設計篇七

本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:

(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。

數(shù)學思想方法的教學是中學數(shù)學教學中的重要組成部分,有利于學生加深數(shù)學知識的理解和掌握。

本章重視與內容密切相關的數(shù)學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數(shù)學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經(jīng)學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O置這些問題,都是為了加強數(shù)學思想方法的教學。

加強與前后各章教學內容的聯(lián)系,注意復習和應用已學內容,并為后續(xù)章節(jié)教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數(shù)學知識的學習和鞏固。

本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”這樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。

《課程標準》和教科書把“解三角形”這部分內容安排在數(shù)學五的第一部分內容,

位置相對靠后,在此內容之前學生已經(jīng)學習了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的'關系?”,并進而指出,“從余弦定理以及余弦函數(shù)的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

學數(shù)學的最終目的是應用數(shù)學,而如今比較突出的兩個問題是,學生應用數(shù)學的意識不強,創(chuàng)造能力較弱。學生往往不能把實際問題抽象成數(shù)學問題,不能把所學的數(shù)學知識應用到實際問題中去,對所學數(shù)學知識的實際背景了解不多,雖然學生機械地模仿一些常見數(shù)學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學課題,最后把數(shù)學知識應用于實際問題。

1.1正弦定理和余弦定理(約3課時)

1.2應用舉例(約4課時)

1.3實習作業(yè)(約1課時)

1.要在本章的教學中,應該根據(jù)教學實際,啟發(fā)學生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應該因勢利導,根據(jù)具體教學過程中學生思考問題的方向來啟發(fā)學生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應用兩個定理解決有關的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應該鼓勵學生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學生設計應用的程序,得到在實際中可以直接應用的算法。

2.適當安排一些實習作業(yè),目的是讓學生進一步鞏固所學的知識,提高學生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學語言表達實習過程和實習結果能力,增強學生應用數(shù)學的意識和數(shù)學實踐能力。教師要注意對于學生實習作業(yè)的指導,包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。

高中數(shù)學必修教案設計篇八

掌握三角函數(shù)模型應用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.

教學重難點。

利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

教學過程。

一、練習講解:《習案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習:教材p65面3題。

三、小結:1、三角函數(shù)模型應用基本步驟:。

(1)根據(jù)圖象建立解析式;。

(2)根據(jù)解析式作出圖象;。

(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型.

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.

四、作業(yè)《習案》作業(yè)十四及十五。

將本文的word文檔下載到電腦,方便收藏和打印。

高中數(shù)學必修教案設計篇九

一、教學目標:

知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義

過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義

情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。

二、重難點:

教學重點:曲線參數(shù)方程的定義及方法

教學難點:選擇適當?shù)膮?shù)寫出曲線的參數(shù)方程.

三、教學方法:

啟發(fā)、誘導發(fā)現(xiàn)教學.

四、教學過程

(一)、復習引入:

1.寫出圓方程的標準式和對應的參數(shù)方程。

圓參數(shù)方程(為參數(shù))

(2)圓參數(shù)方程為:(為參數(shù))

2.寫出橢圓參數(shù)方程.

(二)、講解新課:

如果已知直線l經(jīng)過兩個定點q(1,1),p(4,3),

那么又如何描述直線l上任意點的位置呢?

2、教師引導學生推導直線的參數(shù)方程:

(1)過定點傾斜角為的直線的

參數(shù)方程

(為參數(shù))

【辨析直線的參數(shù)方程】:設m(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點p到點m的位移,可以用有向線段數(shù)量來表示。帶符號.

(2)、經(jīng)過兩個定點q,p(其中)的'直線的參數(shù)方程為。其中點m(x,y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點m分有向線段的數(shù)量比。當時,m為內分點;當且時,m為外分點;當時,點m與q重合。

(三)、直線的參數(shù)方程應用,強化理解。

1、例題:

學生練習,教師準對問題講評。反思歸納:

1)求直線參數(shù)方程的方法;

2)利用直線參數(shù)方程求交點。

2、鞏固導練:

補充:

1)直線與圓相切,那么直線的傾斜角為(a)

a.或b.或c.或d.或

2)(坐標系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.

解:直線化為普通方程是,

該直線的斜率為,

直線(為參數(shù))化為普通方程是,

該直線的斜率為,

則由兩直線垂直的充要條件,得,。

(四)、小結:

(1)直線參數(shù)方程求法;

(2)直線參數(shù)方程的特點;

(3)根據(jù)已知條件和圖形的幾何性質,注意參數(shù)的意義。

(五)、作業(yè):

補充:設直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為

【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎題。

解析:由題直線的普通方程為,故它與與的距離為。

五、教學反思:

高中數(shù)學必修教案設計篇十

一)、培養(yǎng)良好的學習興趣。

1、課前預習,對所學知識產生疑問,產生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W習的動力。

3、思考問題注意歸納,挖掘你學習的潛力。

5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數(shù)學概念也回歸于現(xiàn)實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。

二)、建立良好的學習數(shù)學習慣。

習慣是經(jīng)過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數(shù)學習慣還包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養(yǎng)自己再學習能力。

三)、有意識培養(yǎng)自己的各方面能力。

數(shù)學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學學習環(huán)境中得到培養(yǎng)的。在平時學習中要注意開發(fā)不同的學習場所,參與一切有益的學習實踐活動,如數(shù)學第二課堂、數(shù)學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養(yǎng)都必須學習、理解、訓練、應用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數(shù)學能力的培養(yǎng)開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發(fā)展。

高中數(shù)學必修教案設計篇十一

要學好數(shù)學,最關鍵的是要有一個好的基礎。只有打牢數(shù)學基礎,才能夠把高中數(shù)學好,同樣只有打好基礎,才能夠數(shù)學取得高分。打好基礎是最關鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。

想學好數(shù)學,對數(shù)學感興趣

其實學好數(shù)學最好的辦法就是發(fā)自內心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數(shù)學的積極性也就提高了,覺得數(shù)學并沒有那么難,就愿意去多接觸了。

多做題反復做,有題感

其實學好數(shù)學辦法就是要大量做題,反復去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數(shù)學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。

高中數(shù)學必修教案設計篇十二

數(shù)學教學的宗旨是讓學生在主動參與中學會學習。中學生的身體、心理發(fā)展正趨于成熟期,對事物充滿著好奇,又有自己的想法,有時想表達自己的想法但又不愿在公開場合表達。根據(jù)這些特點,教師應設置有效的三維目標激發(fā)提升,設置貼近學生的情境激發(fā)興趣,設置有懸念的問題激發(fā)參與,設置開放的問題激發(fā)討論,設置有挑戰(zhàn)的問題激發(fā)獨立思考,設置抽象的問題激發(fā)理解。

進行這些設置,教師必須了解學生的現(xiàn)有水平和可能的發(fā)展水平,準確定位有效的教學目標;精心設置導入,在盡量短的時間內吸引學生的注意力;正確把握問題的難度、坡度和密度,讓學生努力后能接近或達成目標;以適當?shù)恼{控營造和諧的課堂氣氛,提高學生參與的積極性。

利用信息技術拓寬學習資源。

并善于獨立思考,學會分析問題和創(chuàng)造性地解決問題”。例如,筆者在講解解析幾何內容時,就通過課件“奇妙的坐標系”向學生展示了坐標系的誕生、完善及應用過程,使數(shù)學教學成為了再創(chuàng)造、再發(fā)現(xiàn)的教學。

高中數(shù)學必修教案設計篇十三

了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景.

(2)一元二次不等式

會從實際情境中抽象出一元二次不等式模型.

通過函數(shù)圖象了解一元二次不等式與相應的二次函數(shù)、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題

會從實際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

(4)基本不等式:

了解基本不等式的證明過程.

高中數(shù)學必修教案設計篇十四

一、 教學目標:1.了解普查的意義.2.結合具體的實際問題情境,理解隨機抽樣的必要性和重要性.

二、重難點:結合具體的實際問題情境,理解隨機抽樣的必要性和重要性.

三、教學方法:閱讀材料、思考與交流

四、教學過程

(一)、普查

1、【問題提出】 p7

通過我國第五次人口普查的有關數(shù)據(jù),讓學生體會到統(tǒng)計對政府決策的重要作用――統(tǒng)計數(shù)據(jù)可以提供大量的信息,為國家的宏觀決策提供有關的支持.教科書通過對人口普查的有關新聞報道,讓學生體會人口普查的規(guī)模是何等的宏大與艱辛.

教科書提出了三個有代表性的問題.第一個問題主要是針對人口普查的作用,人口普查可以了解一個國家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長趨勢等.人口普查是對國家的政府決策實行情況的一個檢驗,比如,國家計劃生育政策,經(jīng)濟發(fā)展戰(zhàn)略,國家“普及九年義務教育”政策,人民群眾的生活水平等.第二個問題是針對普查本身存在的問題提出的,以加深學生對于普查的理解.學生可能有一個誤解,普查就是100%的準確,其實不然,即使是最周全的調查方案,在實際執(zhí)行時都會產生一個誤差.教科書通過這個問題,目的是讓學生理解在人口普查中出現(xiàn)漏登是正常情況,調查方案的設計是盡可能讓這個誤差降低到最小.同時,也要讓學生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據(jù)對國家的宏觀決策依然具有重要的作用.第三個問題是針對人口普查工作的艱辛而提出的,讓學生體會人口普查數(shù)據(jù)得來不易,要尊重人口普查人員的勞動,對人口普查工作要大力支持.

2、【閱讀材料】 p4

“閱讀材料”是課堂閱讀,目的是讓學生了解普查工作的特點和重要性,以及我國目前主要的一些普查工作.進而,總結出普查的主要不足之處,這是從一個方面說明了抽樣調查的必要性.

普查是指一個國家或一個地區(qū)專門組織的一次性大規(guī)模的全面調查,目的是為了詳細地了解某項重要的國情、國力.

普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.

普查是一項非常艱巨的工作,它要對所有的對象進行調查.當普查的對象很少時,普查無疑是一項非常好的調查方式.

(二)、抽樣調查

【例1和其后的“思考交流”】 p8~9

緊接著,教科書通過例1和“思考交流”的兩個問題,讓學生了解普查有時候難以實現(xiàn).這主要有兩個方面的原因,其一,被調查對象的量大;其二,普查對被調查對象本身具有一定的破壞性.這從另一個方面說明了抽樣調查的必要性.然后,教科書通過抽象概括總結出抽樣調查的兩個主要優(yōu)點.

【例2和其后的“思考交流”】 p9~10

主要是討論在抽樣調查時,什么樣的樣本才具有代表性.在抽樣時,如果抽樣不當,那么調查的結果可能會出現(xiàn)與實際情況不符,甚至是錯誤的結果,導致對決策的誤導.在抽樣調查時,一定要保證隨機性原則,盡可能地避免人為因素的干擾;并且要保證每個個體以一定的概率被抽取到;同時,還要注意到要盡可能地控制抽樣調查中的.誤差.

由于檢驗對象的量很大,或檢驗對檢驗對象具有破壞性時,通常情況下,所以采用普查的方法有時是行不通的.通常情況下,從調查對象中按照一定的方法抽取一部分,進行調查或觀測,獲取數(shù)據(jù),并以此調查對象的某項指標做出推斷,這就是抽樣調查.其中,調查對象的全體稱為總體,被抽取的一部分稱為樣本.

抽樣調查的優(yōu)點:抽樣調查與普查相比,有很多優(yōu)點,最突出的有兩點: (1)迅速、及時;(2)節(jié)約人力、物力和財力.

解:統(tǒng)計的總體是指該地10 000名學生的體重;個體是指這10 000名學生中每一名學生的體重;樣本指這10 000名學生中抽出的200名學生的體重;總體容量為10 000;樣本容量為200.若對每一個個體逐一進行“調查”,有時費時、費力,有時根本無法實現(xiàn),一個行之有效的辦法就是在每一個個體被抽取的機會均等的前提下從總體中抽取部分個體,進行抽樣調查.

例2 為了制定某市高一、高二、高三三個年級學生校服的生產計劃,有關部門準備對180名初中男生的身高作調查,現(xiàn)有三種調查方案:

a.測量少年體校中180名男子籃球、排球隊員的身高;

b.查閱有關外地180名男生身高的統(tǒng)計資料;

c.在本市的市區(qū)和郊縣各任選一所完全中學,兩所初級中學,在這六所學校有關年級的小班中,用抽簽的方法分別選出10名男生,然后測量他們的身高.

解: 選c方案.理由:方案c采取了隨機抽樣的方法,隨機樣本比較具有代表性、普遍性,可以被用來估計總體.

例3 中央電視臺希望在春節(jié)聯(lián)歡晚會播出后一周內獲得當年春節(jié)聯(lián)歡晚會的收視率.下面三名同學為電視臺設計的調查方案.

甲同學:我把這張《春節(jié)聯(lián)歡晚會收視率調查表》放在互聯(lián)網(wǎng)上,只要上網(wǎng)登錄該網(wǎng)址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計收視率了.

乙同學:我給我們居民小區(qū)的每一份住戶發(fā)一個是否在除夕那天晚上看過中央電視臺春節(jié)聯(lián)歡晚會的調查表,只要一兩天就可以統(tǒng)計出收視率.

丙同學:我在電話號碼本上隨機地選出一定數(shù)量的電話號碼,然后逐個給他們打電話,問一下他們是否收看了中央電視臺春節(jié)聯(lián)歡晚會,我不出家門就可以統(tǒng)計出中央電視臺春節(jié)聯(lián)歡晚會的收視率.

請問:上述三名同學設計的調查方案能夠獲得比較準確的收視率嗎?為什么?

解: 綜上所述,這三種調查方案都有一定的片面性,不能得到比較準確的收視率.

(三)、課堂小結:1、普查是一項非常艱巨的工作,它要對所有的對象進行調查.當普查的對象很少時,普查無疑是一項非常好的調查方式.普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.2、通常情況下,從調查對象中按照一定的方法抽取一部分,進行調查或觀測,獲取數(shù)據(jù),并以此調查對象的某項指標做出推斷,這就是抽樣調查.其中,調查對象的全體稱為總體,被抽取的一部分稱為樣本.抽樣調查的優(yōu)點:抽樣調查與普查相比,有很多優(yōu)點,最突出的有兩點: (1)迅速、及時;(2)節(jié)約人力、物力和財力.

(四)、作業(yè): p10練習題; p10【習題1―2】

五、教后反思:

高中數(shù)學必修教案設計篇十五

對重點內容應重點復習.首先擬出主要內容,然后有目的有針對性地做相關內容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習.

重視高中數(shù)學中的基本方法

高考數(shù)學命題除了著重考查基礎知識外,還十分重視對數(shù)學方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強的數(shù)學方法.同學們在復習時應對每一種方法的實質,它所適應的題型,包括解題步驟都熟練掌握.其次應重視對數(shù)學思想的理解及運用,如函數(shù)思想、數(shù)形結合思想.

應注意實際問題的解決和探索性試題的研究

現(xiàn)在各地風行素質教育,呼吁改革考試命題.增強運用數(shù)學知識解決實際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時學習中較少涉及,希望同學們把近幾年其他省、市高考試題中有關此內容的題目集中研究一下,有備無患.這一階段,重點是提高學生的綜合解題能力,訓練學生的解題策略,加強解題指導,提高應試能力.

高中數(shù)學必修教案設計篇十六

本節(jié)課力的合成,是在學生了解力的基本性質和常見幾種力的基礎上,通過等效替代思想,研究多個力的合成方法,是對前幾節(jié)內容的深化。

本節(jié)重點介紹力的合成法則——平行四邊形定則,但實際這是所有矢量運算的共同工具,為學習其他矢量的運算奠定了基礎。

更重要的是,力的合成是解決力學問題的基礎,對今后牛頓運動定律、平衡問題、動量與能量問題的理解和應用都會產生重要影響。

因此,這節(jié)課承前啟后,在整個高中物理學習中占據(jù)著非常重要的地位。

二、教學目標定位

為了讓學生充分進行實驗探究,體驗獲取知識的過程,本節(jié)內容分兩課時來完成,今天我說課的內容為本節(jié)內容的第一課時。根據(jù)上述教材分析,考慮到學生的實際情況,在本節(jié)課的教學過程中,我制定了如下教學目標:

一、知識與技能

.理解合力、分力、力的合成的概念.理解力的合成本質上是從等效的角度進行力的替代.

.探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力.

二、過程與方法

.通過學習合力和分力的概念,了解物理學常用的方法——等效替代法.

.通過實驗探究方案的設計與實施,體驗科學探究的過程。

三、情感態(tài)度與價值觀

.培養(yǎng)學生的合作精神,激發(fā)學生學習興趣,形成良好的學習方法和習慣.

.培養(yǎng)認真細致、實事求是的實驗態(tài)度.

根據(jù)以上分析確定本節(jié)課的重點與難點如下:

一、重點

.合力和分力的概念以及它們的關系.

.實驗探究力的合成所遵循的法則.

二、難點

平行四邊形定則的理解和運用。

三、重、難點突破方法——教法簡介

本堂課的重、難點為實驗探究力的合成所遵循的法則——平行四邊形定則,為了實現(xiàn)重難點的突破,讓學生真正理解平行四邊形定則,就要讓學生親自體驗規(guī)律獲得的過程。

因此,本堂課在學法上采用學生自主探究的實驗歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學生親自去體驗、探究、歸納總結。體現(xiàn)學生主體性。

實驗歸納法的步驟如下。這樣設計讓學生不僅能知其然,更能知其所以然,這也是本堂課突破重點和難點的重要手段。

本堂課在教法上采用啟發(fā)式教學——通過設置問題,引導啟發(fā)學生,激發(fā)學生思維。體現(xiàn)教師主導作用。

四、教學過程設計

采用六環(huán)節(jié)教學法,教學過程共有六個步驟。

教學過程第一環(huán)節(jié)、創(chuàng)設情景導入新課:

第二環(huán)節(jié)、新課教學:

展示合力與分力以及力的合成的概念,強調等效替代法。舉例說明等效替代法是一種重要的物理方法。

第三環(huán)節(jié)、合作探究:

首先,教師展示實驗儀器,讓學生思考如何設計實驗,,如何進行實驗呢?學生面對器材可能會覺得無從下手。再次設置問題引導學生思維,讓學生面對儀器分組討論以下四個問題。

問題1要用動畫輔助說明。在問題2中,教師要強調結點的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學生注意測力計的使用,減小實驗誤差。通過對這四個問題的討論,再結合多媒體動畫的展示,使學生對探究的步驟清晰明了。

然后,學生分組實驗,合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實驗完成后請學生展示實驗結果,應該立即可得出結論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數(shù)方法相加減.

那合力與分力到底滿足什么關系呢?

此時要引導學生思考:既然從數(shù)字上找不到關系,哪可不可以從幾何上找找關系呢?學生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點,ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實踐才有發(fā)言權,學生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。

學生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實驗的誤差是不可避免的,科學家經(jīng)過很多次的、精細的實驗,最后確認對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結論二:力的合成法則——平行四邊形定則。

進入

第四環(huán)節(jié):歸納總結

高中物理必修二教案

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點擊下載文檔

搜索文檔

【本文地址:http://www.aiweibaby.com/zuowen/8166734.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔