編寫教案可以促使教師深入思考每一堂課的教學(xué)目標(biāo)和教學(xué)內(nèi)容。教師可以運用多種教學(xué)技巧,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性。通過閱讀范文,教師可以了解不同學(xué)科、不同教學(xué)階段的教案寫作風(fēng)格。
函數(shù)的應(yīng)用教案篇一
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下反比例函數(shù)的基本理論,“學(xué)習(xí)理論是為了服務(wù)于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點處理實際問題,主要圍繞著路程、工程這樣的實際問題,通過在速度一定的條件下路程與時間的關(guān)系,認識到反比例函數(shù)與實際問題的關(guān)系,在講解這幾個例子的時候,創(chuàng)設(shè)了學(xué)生熟悉的情境,簡單的一句話引出問題,這樣更能引起學(xué)生的興趣,使學(xué)生更積極地參與到教學(xué)中來,因為情境熟悉,也能快速地與學(xué)生產(chǎn)生共鳴。
創(chuàng)設(shè)了輕松和諧的教學(xué)環(huán)境與氛圍,師生互動較好,這樣能使學(xué)生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學(xué)生利用圖象解決問題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實際情境中的取值范圍問題。而后,給學(xué)生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關(guān)反比例函數(shù)的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結(jié)中讓學(xué)生體會到利用反比例函數(shù)解決實際問題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。從總體看整個教學(xué)環(huán)節(jié)也比較完整。
函數(shù)的應(yīng)用教案篇二
知識網(wǎng)絡(luò)。
學(xué)習(xí)要求。
1.了解解實際應(yīng)用題的一般步驟;。
2.初步學(xué)會根據(jù)已知條件建立函數(shù)關(guān)系式的方法;。
3.滲透建模思想,初步具有建模的'能力.
自學(xué)評價。
1.數(shù)學(xué)模型就是把實際問題用數(shù)學(xué)語言抽象概括,再從數(shù)學(xué)角度來反映或近似地反映實際問題,得出關(guān)于實際問題的數(shù)學(xué)描述.
2.數(shù)學(xué)建模就是把實際問題加以抽象概括。
建立相應(yīng)的數(shù)學(xué)模型的過程,是數(shù)學(xué)地解決問題的關(guān)鍵.
3.實際應(yīng)用問題建立函數(shù)關(guān)系式后一般都要考察定義域.
【精典范例】。
例1.寫出等腰三角形頂角(單位:度)與底角的函數(shù)關(guān)系.
例2.某計算機集團公司生產(chǎn)某種型號計算機的固定成本為萬元,生產(chǎn)每臺計算機的可變成本為元,每臺計算機的售價為元.分別寫出總成本(萬元)、單位成本(萬元)、銷售收入(萬元)以及利潤(萬元)關(guān)于總產(chǎn)量(臺)的函數(shù)關(guān)系式.
分析:銷售利潤銷售收入成本,其中成本(固定成本可變成本).
【解】總成本與總產(chǎn)量的關(guān)系為。
單位成本與總產(chǎn)量的關(guān)系為。
銷售收入與總產(chǎn)量的關(guān)系為。
利潤與總產(chǎn)量的關(guān)系為。
函數(shù)的應(yīng)用教案篇三
(二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的'定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子 。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點的關(guān)鍵是嚴格按過程進行證明。
(一)教學(xué)目標(biāo):
掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。
(二)解析:
會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準(zhǔn)確確定 的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實際情況進行知識補習(xí),特別是因式分解、二次根式中的分母有理化的補習(xí)。
在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因為使用(),有利于()。
函數(shù)的應(yīng)用教案篇四
教學(xué)目標(biāo):
1、能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
3、在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
教學(xué)重點、難點:
重點:能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
教學(xué)過程:
一、情景創(chuàng)設(shè):
為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______.
二、新授:
(1)如果小明以每分種120字的.速度錄入,他需要多少時間才能完成錄入任務(wù)?
(3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?
(2)如果蓄水池的深度設(shè)計為5m,那么蓄水池的底面積應(yīng)為多少平方米?
(3)由于綠化以及輔助用地的需要,經(jīng)過實地測量,蓄水池的長與寬最多只能設(shè)計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數(shù))。
三、課堂練習(xí)。
1、一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數(shù),當(dāng)v=10m3時,=1.43kg/m3.(1)求與v的函數(shù)關(guān)系式;(2)求當(dāng)v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調(diào)至0.55元至0.75元之間.經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時,y=-0.8.
(1)求y與x之間的函數(shù)關(guān)系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設(shè)pa=x,點d到pa的距離de=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍.
四、小結(jié)。
五、作業(yè)。
30.31、2、3。
函數(shù)的應(yīng)用教案篇五
2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點解決問題的能力。
二、重點、難點。
2.難點:分析實際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式。
3.難點的突破方法:
用函數(shù)觀點解實際問題,一要搞清題目中的.基本數(shù)量關(guān)系,將實際問題抽象成數(shù)學(xué)問題,看看各變量間應(yīng)滿足什么樣的關(guān)系式(包括已學(xué)過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關(guān)系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結(jié)合,這樣有利于分析和解決問題。教學(xué)中要讓學(xué)生領(lǐng)會這一解決實際問題的基本思路。
三、例題的意圖分析。
教材第57頁的例1,數(shù)量關(guān)系比較簡單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學(xué)生學(xué)會分析問題的方法。
教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實際問題,此題的實際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。
函數(shù)的應(yīng)用教案篇六
這節(jié)課是在學(xué)生掌握了反比例函數(shù)的概念及其圖像與性質(zhì)的基礎(chǔ)之上而學(xué)習(xí)的,并且上學(xué)學(xué)習(xí)了正比例函數(shù)和一次函數(shù),因此學(xué)生已經(jīng)有了一定的知識準(zhǔn)備,但是由于學(xué)生的知識所限,對于例題中的信息并不了解,這樣容易造成學(xué)生在了解上的困難,所以在教學(xué)時我選用了學(xué)生所熟悉的實例進行教學(xué)。使學(xué)生從身邊事物入手,真正體會到數(shù)學(xué)知識來源于生活,有一種親切感,另外對于本節(jié)的問題,文字多,閱讀量大,所以我應(yīng)用幻燈片的形式展現(xiàn),效果要好,注意要讓學(xué)生經(jīng)歷實踐、思考、表達與交流的過程,給學(xué)生留下充足的時間來活動,不斷引導(dǎo)學(xué)生利用數(shù)學(xué)知識解決實際問題,本節(jié)課效果較好。
函數(shù)的應(yīng)用教案篇七
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下反比例函數(shù)的基本理論,“學(xué)習(xí)理論是為了服務(wù)于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點處理實際問題,主要圍繞著路程、工程這樣的實際問題,通過在速度一定的條件下路程與時間的關(guān)系,認識到反比例函數(shù)與實際問題的關(guān)系,在講解這幾個例子的時候,創(chuàng)設(shè)了學(xué)生熟悉的情境,簡單的一句話引出問題,這樣更能引起學(xué)生的興趣,使學(xué)生更積極地參與到教學(xué)中來,因為情境熟悉,也能快速地與學(xué)生產(chǎn)生共鳴。
創(chuàng)設(shè)了輕松和諧的教學(xué)環(huán)境與氛圍,師生互動較好,這樣能使學(xué)生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學(xué)生利用圖象解決問題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實際情境中的取值范圍問題。而后,給學(xué)生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關(guān)反比例函數(shù)的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結(jié)中讓學(xué)生體會到利用反比例函數(shù)解決實際問題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。從總體看整個教學(xué)環(huán)節(jié)也比較完整。
函數(shù)的應(yīng)用教案篇八
使學(xué)生對反比例函數(shù)和反比例函數(shù)的圖象意義加深理解。
一、新授:
1、實例1:(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?
答:p=600,p是s的反比例函數(shù)。
(2)、當(dāng)木板面積為0.2m2時,壓強是多少?
答:p=3000pa。
(3)、如果要求壓強不超過6000pa,木板的面積至少要多少?
答:2。
(4)、在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象。
(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進行交流。
二、做一做。
1、(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r()之間的函數(shù)關(guān)系如圖5-8所示。
(2)蓄電池的電壓是多少?你以寫出這一函數(shù)的.表達式嗎?
電壓u=36v,i=60k。
r()345678910。
i(a)。
3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k的圖象相交于a、b兩點,其中點a的坐標(biāo)為(3,23)。
(1)分別寫出這兩個函數(shù)的表達式;。
(2)你能求出點b的坐標(biāo)嗎?你是怎樣求的?與同伴進行交流;。
隨堂練習(xí):
p145~1461、2、3、4、5。
作業(yè):p146習(xí)題5.41、2。
函數(shù)的應(yīng)用教案篇九
這一節(jié)的重點就是鈉的化學(xué)性質(zhì)——與水反應(yīng),還有鈉的物理性質(zhì)——顏色。難點就是鈉與氧氣在充足及過量時候的反應(yīng),還有就是實驗,由于反應(yīng)速度快,難以觀察,最后就是反應(yīng)的化學(xué)方程式。
三教學(xué)理念及其方法。
對反應(yīng)速度快這個問題可以通過慢放實驗的動化,使學(xué)生能看清楚過程。
2涉及原子等微觀粒子的結(jié)合過程,需要很強的空間想象力,可以通過計算機動畫演示,使反應(yīng)變得直觀,更容易理解。
3對于鈉與水的反應(yīng),具有一定的危險性,可以通過動畫來展示實驗不當(dāng)造成的后果。
四教學(xué)過程。
2再以水滅火圖片給學(xué)生觀看,然后以鈉放入水中為參比,激發(fā)學(xué)生的興趣。
3再通過一些趣味性實驗演示,能更進一步激發(fā)學(xué)習(xí)的積極性,例如用一裝有半瓶水的塑料瓶,瓶塞上扎一黃豆大的鈉的大頭針,瓶倒置使鈉和水充分反應(yīng),取下塞子、點燃火柴靠近瓶口有尖銳的爆鳴聲,效果得到大大改進。
五學(xué)法分析。
通過這節(jié)課的教學(xué)教給學(xué)生對金屬鈉的認識,掌握金屬鈉的性質(zhì),透過現(xiàn)象看本質(zhì),分析、歸納物質(zhì)的性質(zhì),培養(yǎng)學(xué)生觀察、分析問題的能力,調(diào)動學(xué)生積極性,激發(fā)學(xué)生的學(xué)習(xí)興趣。
五總結(jié)性質(zhì),得出結(jié)論,布置作業(yè)。
列出來,這樣條理就清晰了,然后再總述一下這節(jié)所學(xué)的內(nèi)容,講述的重點及難點。最后布置2個思考題:
(1)鈉為什么保存在煤油中?
(2)把鈉投到苯和水的混合液中鈉在水和苯間跳上“水上芭蕾”,為什么?
再講一下鈉的用途。
六板書設(shè)計。
板書設(shè)計第一節(jié)鈉。
一、鈉的物理性質(zhì)。
二、鈉的化學(xué)性質(zhì)。
1鈉的原子結(jié)構(gòu)。
2鈉與氧氣反應(yīng)(條件不同,產(chǎn)物不同)。
3鈉與水反應(yīng)(重點)。
函數(shù)的應(yīng)用教案篇十
教學(xué)目標(biāo):在復(fù)習(xí)指數(shù)函數(shù)與對數(shù)函數(shù)的特性之后,通過圖像對比使學(xué)生較快的學(xué)會不求值比較指數(shù)函數(shù)與對數(shù)函數(shù)值的大小及提高對復(fù)合型函數(shù)的定義域與值域的解題技巧。
難點:指導(dǎo)學(xué)生如何根據(jù)上述特性解決復(fù)合型函數(shù)的定義域與值域的問題。
教學(xué)方法:多媒體授課。
學(xué)法指導(dǎo):借助列表與圖像法。
教具:多媒體教學(xué)設(shè)備。
教學(xué)過程:
函數(shù)的應(yīng)用教案篇十一
學(xué)生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學(xué)生能夠根據(jù)所學(xué)函數(shù)知識判別計算得到的數(shù)據(jù)的正確性。
學(xué)生能夠使用函數(shù)(sum,average,max,min等)計算所給數(shù)據(jù)的和、平均值、最大最小值。學(xué)生通過自主探究學(xué)會新函數(shù)的使用。并且能夠根據(jù)實際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ嬎愕臄?shù)據(jù)結(jié)果合理利用。
學(xué)生自主學(xué)習(xí)意識得到提高,在任務(wù)的完成過程中體會到成功的喜悅,并在具體的任務(wù)中感受環(huán)境保護的重要性及艱巨性。
sum函數(shù)的插入和使用。
函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。
任務(wù)驅(qū)動,觀察分析,通過實踐掌握,發(fā)現(xiàn)問題,協(xié)作學(xué)習(xí)。
excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。
1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。
2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進行教學(xué)。
3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學(xué)知識計算各省各類廢棄物的總量。
函數(shù)名表示函數(shù)的計算關(guān)系。
=sum(起始單元格:結(jié)束單元格)。
4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?
注意參數(shù)的正確性。
1、簡單描述函數(shù):函數(shù)是一些預(yù)定義了的計算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進行計算。
在公式中計算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。
2、使用函數(shù)sum計算各廢棄物的全國總計。(強調(diào)計算范圍的正確性)。
3、通過介紹average函數(shù)學(xué)習(xí)函數(shù)的輸入。
函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數(shù),統(tǒng)計出該表格中比去年同期增長%的平均數(shù)。
(參數(shù)的格式要嚴格;符號要用英文符號,以避免出錯。)。
有的同學(xué)開始瞪眼睛了,不大好用吧?
因為這種方法要求我們對函數(shù)的使用比較熟悉,如果我們對需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對話框來輸入函數(shù)。
用相同任務(wù)演示操作過程。
4、引出max和min函數(shù)。
探索任務(wù):利用提示應(yīng)用max和min函數(shù)計算各廢棄物的最大和最小值。
5、引出countif函數(shù)。
探索任務(wù):利用countif函數(shù)按要求計算并體會函數(shù)的不同格式。
1、教師小結(jié)比較。
2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。
四、???????。
1、廢棄物數(shù)量大危害大,各個省都在想各種辦法進行處理,把對環(huán)境的污染降到最低。
2、研究任務(wù):運用表格數(shù)據(jù),計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數(shù),并對應(yīng)計算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。
1、分析存在問題,表揚練習(xí)完成比較好的同學(xué),強調(diào)鼓勵大家探究學(xué)習(xí)的精神。
2、把結(jié)果進行記錄,上繳或在課后進行分析比較,寫出一小論文。
1、讓學(xué)生體會到固體廢棄物數(shù)量的巨大。
2、處理真實數(shù)據(jù)引發(fā)學(xué)生興趣。
通過比較得到兩種方法的優(yōu)劣。
學(xué)生的計算結(jié)果在現(xiàn)實中的運用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。
通過類比學(xué)習(xí),提高學(xué)生的自學(xué)能力和分析問題能力。
實際數(shù)據(jù),引發(fā)思考。
學(xué)生應(yīng)用課堂所學(xué)知識。
學(xué)生帶著任務(wù)離開教室,課程之間整合,學(xué)生環(huán)境保護知識得到加強。
觀看投影。
學(xué)生用公式法和自動求和兩種方法計算各省廢棄物總量。
回答可用自動求和。
動手操作。
計算各類廢氣物的全國各省平均。
練習(xí)。
練習(xí)。
用自己計算所得數(shù)據(jù)對現(xiàn)實進行分析。
應(yīng)用所學(xué)知識。
練習(xí)并記錄數(shù)據(jù)。
函數(shù)的應(yīng)用教案篇十二
微分方程指的是,聯(lián)系著自變量,未知函數(shù)及它的導(dǎo)數(shù)的關(guān)系式子。
微分方程是高等數(shù)學(xué)的重要內(nèi)容之一,是一門與實際聯(lián)系較密切的一個內(nèi)容。
在自然科學(xué)和技術(shù)科學(xué)領(lǐng)域中,例如化學(xué),生物學(xué),自動控制,電子技術(shù)等等,都提出了大量的微分方程問題。
在實際教學(xué)過程中應(yīng)注重實際應(yīng)用例子或應(yīng)用背景,使學(xué)生對所學(xué)微分方程內(nèi)容有具體地,形象地認識,從而激發(fā)他們強大的學(xué)習(xí)興趣。
1.1生態(tài)系統(tǒng)中的弱肉強食問題。
在這里考慮兩個種群的系統(tǒng),一種以另一種為食,比如鯊魚(捕食者)與食用魚(被捕食者),這種系統(tǒng)稱為“被食者—捕食者”系統(tǒng)。
volterra提出:記食用魚數(shù)量為,鯊魚數(shù)量為,因為大海的資源很豐富,可以認為如果,則將以自然生長率增長,即。
但是鯊魚以食用魚為食,致使食用魚的增長率降低,設(shè)降低程度與鯊魚數(shù)量成正比,于是相對增長率為。
常數(shù),反映了鯊魚掠取食用魚的能力。
如果沒有食用魚,鯊魚無法生存,設(shè)鯊魚的自然死亡率為,則。
食用魚為鯊魚提供了食物,致使鯊魚死亡率降低,即食用魚為鯊魚提供了增長的條件。
設(shè)增長率與食用魚的數(shù)量成正比,于是鯊魚的相對增長率為。
常數(shù)0,反映了食用魚對鯊魚的供養(yǎng)能力。
所以最終建立的模型為:
這就是一個非線性的微分方程。
1.2雪球融化問題。
有一個雪球,假設(shè)它是一個半徑為r的球體,融化時體積v的變化率與雪球的表面積成正比,比例常數(shù)為0,則可建立如下模型:
1.3冷卻(加熱)問題。
牛頓冷卻定律具體表述是,物體的溫度隨時間的變化率跟環(huán)境的的溫差成正比。
記t為物體的溫度,為周圍環(huán)境的溫度,則物體溫度隨時。
2結(jié)語。
文中通過舉生態(tài)系統(tǒng)中弱肉強食問題,雪球融化及物理學(xué)中冷卻定律問題為例給出了微分方程在實際中的應(yīng)用。
在講解高等數(shù)學(xué)微分方程這一章內(nèi)容時經(jīng)常舉些應(yīng)用例子,能引起學(xué)生對微分方程的學(xué)習(xí)興趣,能使學(xué)生易于理解和掌握其基本概念及理論,達到事半功倍之效。
參考文獻。
[1]王嘉謀,石林.高等數(shù)學(xué)[m].北京:高等教育出版社,.
[2]王高雄,周之銘,朱思銘,等.常微分方程[m].2版.北京:科學(xué)出版社,.
[3]齊歡.數(shù)學(xué)建模方法[m].武漢:華中理工大學(xué)出版社,.
微分方程在數(shù)學(xué)建模中的應(yīng)用【2】。
在許多實際問題中,當(dāng)直接導(dǎo)出變量之間的函數(shù)關(guān)系較為困難,但導(dǎo)出包含未知函數(shù)的導(dǎo)數(shù)或微分的關(guān)系式較為容易時,可用建立微分方程模型的方法來研究該問題。
本文主要從交通紅綠燈模型和市場價格模型來論述微分方程在數(shù)學(xué)建模中的應(yīng)用。
數(shù)學(xué)建模是數(shù)學(xué)方法解決各種實際問題的橋梁,隨著計算機技術(shù)的快速發(fā)展,數(shù)學(xué)的應(yīng)用日益廣泛,數(shù)學(xué)建模的作用越來越重要,而且已經(jīng)應(yīng)用到各個領(lǐng)域。
用微分方程解決實際問題的關(guān)鍵是建立實際問題的數(shù)學(xué)模型——微分方程。
這首先要根據(jù)實際問題所提供的條件,選擇確定模型的變量,再根據(jù)有關(guān)學(xué)科,如物理、化學(xué)、生物、經(jīng)濟等學(xué)科理論,找到這些變量遵循的規(guī)律,用微分方程的形式將其表示出來。
一、交通紅綠燈模型。
在十字路口的交通管理中,亮紅燈之前,要亮一段時間的黃燈,這是為了讓那些正行駛在十字路口的人注意,告訴他們紅燈即將亮起,假如你能夠停住,應(yīng)當(dāng)馬上剎車,以免沖紅燈違反交通規(guī)則。
這里我們不妨想一下:黃燈應(yīng)當(dāng)亮多久才比較合適?
停車線的確定,要確定停車線位置應(yīng)當(dāng)考慮到兩點:一是駕駛員看到黃燈并決定停車需要一段反應(yīng)時間,在這段時間里,駕駛員尚未剎車。
二是駕駛員剎車后,車還需要繼續(xù)行駛一段距離,我們把這段距離稱為剎車距離。
駕駛員的反應(yīng)時間(實際為平均反應(yīng)時間)較易得到,可以根據(jù)經(jīng)驗或者統(tǒng)計數(shù)據(jù)求出,交通部門對駕駛員也有一個統(tǒng)一的要求(在考駕照時都必須經(jīng)過測試)。
例如,不失一般性,我們可以假設(shè)它為1秒,(反應(yīng)時間的長短并不影響到計算方法)。
停車時,駕駛員踩動剎車踏板產(chǎn)生一種摩擦力,該摩擦力使汽車減速并最終停下。
設(shè)汽車質(zhì)量為m,剎車摩擦系數(shù)為f,x(t)為剎車后在t時刻內(nèi)行駛的距離,更久剎車規(guī)律,可假設(shè)剎車制動力為fmg(g為重力加速度)。
由牛頓第二定律,剎車過程中車輛應(yīng)滿足下列運動方程:
md2xdt2=-fmg。
x(0)=0,dxdtt=0=v0。
(1)。
在方程(1)兩邊同除以并積分一次,并注意到當(dāng)t=0時dxdt=v0,得到。
dxdt=-fgt+v0。
(2)。
剎車時間t2可這樣求得,當(dāng)t=t2時,dxdt=0,故。
t2=v0fg。
將(2)再積分一次,得。
x(t)=-12fgt2+v0t。
將t2=v0fg代入,即可求得停車距離為。
x(t2)=1v202fg。
據(jù)此可知,停車線到路口的距離應(yīng)為:
l=v0t1+12v20fg。
等式右邊的第一項為反應(yīng)時間里駛過的路程,第二項為剎車距離。
黃燈時間的計算,現(xiàn)在我們可以來確定黃燈究竟應(yīng)當(dāng)亮多久了。
在黃燈轉(zhuǎn)為紅燈的這段時間里,應(yīng)當(dāng)能保證已經(jīng)過線的車輛順利地通過街口,記街道的寬度為d(d很容易測得),平均車身長度為,這些車輛應(yīng)通過的路程最長可達到l+d+l,因而,為保證過線的車輛全部順利通過,黃燈持續(xù)時間至少應(yīng)當(dāng)為:
t=l+d+lv0。
二、市場價格調(diào)整模型。
對于純粹的市場經(jīng)濟來說,商品市場價格取決于市場供需之間的關(guān)系,市場價格能促使商品的供給與需求相等這樣的價格稱為(靜態(tài))均衡價格。
也就是說,如果不考慮商品價格形成的動態(tài)過程,那么商品的市場價格應(yīng)能保證市場的供需平衡,但是,實際的市場價格不會恰好等于均衡價格,而且價格也不會是靜態(tài)的,應(yīng)是隨時間不斷變化的動態(tài)過程。
dpdt=k[d(p)-](k0)。
(3)。
在d(p)和確定情況下,可解出價格與t的函數(shù)關(guān)系,這就是商品的價格調(diào)整模型。
某種商品的價格變化主要服從市場供求關(guān)系。
函數(shù)的應(yīng)用教案篇十三
1、使學(xué)生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì)。
(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3、通過對的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)x本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
(2)對底數(shù)x的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象。
1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2。x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3。x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
重點是理解的定義,把握圖象和性質(zhì)。
難點是認識底數(shù)對函數(shù)值影響的認識。
投影儀
啟發(fā)討論研究式
一、x引入新課
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
1、6、(板書)
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學(xué)生回答:x。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)
1、定義:形如x的函數(shù)稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)
(1)x關(guān)于對x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
(3)關(guān)于是否是的判斷(板書)
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(4)x,x
(5)x。
學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì)。
3、歸納性質(zhì)
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
函數(shù)
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
4、截距:在x軸上沒有,在x軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了。取點時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)
1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法。
2、草圖:
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機畫圖,在同一坐標(biāo)系下得到x的圖象。
最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
(2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
(3)x時,x,x x時,x。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x (板書)
1、利用單調(diào)性比大小。x(板書)
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小
(1)x與x;x(2)x與x;
(3)x與1x。(板書)
首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且
教師最后再強調(diào)過程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小
(1)x與x;x(2)x與x ;
(3)x與x。(板書)
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)
最后由學(xué)生說出x1,1。
解決后由教師小結(jié)比較大小的方法
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習(xí)
練習(xí):比較下列各組數(shù)的大?。ò鍟?/p>
(1)x與x x(2)x與x;
(3)x與x;x(4)x與x。解答過程略
五、小結(jié)
1、的概念
2、的圖象和性質(zhì)
3、簡單應(yīng)用
六、板書設(shè)計
函數(shù)的應(yīng)用教案篇十四
1.在人的身體中,利用氧氣,產(chǎn)生二氧化碳的基本單位是:()。
a.肺泡b.血管c.組織d.細胞。
2.吸氣時,人體膈肌和胸腔所處的狀態(tài):()。
a.膈肌收縮,胸腔變小b.膈肌收縮,胸腔擴大。
c.膈肌舒張,胸腔變小d.膈肌舒張,胸腔擴大。
3.空氣到達肺時,與血液進行氣體交換的主要結(jié)構(gòu)是:()。
a.支氣管b.組織細胞c.肺泡d.氣管。
4.肺泡里的氧氣進入血液中,要通過幾層細胞?()。
a.一層b.兩層c.三層d.四層。
課堂練習(xí):
一、選擇正確答案:
1.在盛有新鮮血液的試管中加入少量檸檬酸鈉,靜止一段時間后,上層呈淡黃色半透明的液體()。
a.紅細胞b.血清c.血小板d.血漿。
2.具有吞噬細菌功能的'血細胞是()。
a.血漿b.紅細胞c.血小板d.白細胞。
3.下列含有血紅蛋白的是()。
a.血漿b.紅細胞c.白細胞d.血小板。
4.血液的成分中具有止血作用的是()。
a.紅細胞b.血漿c.白細胞d.血小板。
5.紅細胞之所以呈紅色,是因為()。
a含血紅蛋白b含有紅色素c含鐵d紅細胞膜是紅色。
6.用顯微鏡觀察人血涂片時,視野中數(shù)量最多的細胞是()。
a.血漿b.紅細胞c.白細胞d.血小板。
7.化膿的傷口中膿液的主要成分是()。
a死亡的rbcb死亡的wbcc死亡的pltd死亡的細菌。
8.長期在平原生活的人,到西藏的最初幾天里,血液中數(shù)量會增多的細胞是()。
a.巨噬細胞b.紅細胞c.白細胞d.血小板。
9.某人經(jīng)常精神不振,易疲勞,臉色蒼白,驗血后,醫(yī)生診斷為貧血癥,他的依據(jù)是:()。
a白細胞過少b血小板過少c血漿過少d紅細胞或血紅蛋白含量少。
二、判斷下列說法是否正確:
1.血漿的功能是運輸氧和二氧化碳。()。
2.成熟的紅細胞有細胞核。()。
3.白細胞有加速凝血和止血的作用。()。
4.血液中的血細胞包括紅細胞、血小板和白細胞。()。
5.血紅蛋白的特性是在氧濃度高的地方和氧結(jié)合,在氧濃度低的地方與氧分離。()。
函數(shù)的應(yīng)用教案篇十五
本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
二、學(xué)情分析。
本節(jié)課主要是研究一次函數(shù)的圖象與性質(zhì),是在學(xué)習(xí)了正比例函數(shù)的.圖象與性質(zhì),并初步了解了如何研究一個具體函數(shù)的圖象與性質(zhì)的基礎(chǔ)上進的。原有知識與經(jīng)驗對本節(jié)課的學(xué)習(xí)有著積極的促進作用,在前后知識的比較中,學(xué)生進一步理解知識,促進認知結(jié)構(gòu)的完善,發(fā)展、比較、抽象與概括能力,進一步體驗研究函數(shù)的基本思路,而這些目標(biāo)的達成要求教學(xué)必須發(fā)揮學(xué)生的主體作用,在函數(shù)圖象及其性質(zhì)的探索活動中,應(yīng)給予學(xué)生足夠的活動、探究、交流、反思的時間與空間,不以老師的講演代替學(xué)生的探索。
(二)教學(xué)目標(biāo)。
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
過程與方法:
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)教學(xué)重點難點。
教學(xué)重點:一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
二、教法學(xué)法。
1、教學(xué)方法。
依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
1、自學(xué)體驗法――利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法――利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
做為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)的應(yīng)用教案篇十六
難點:其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
三.教學(xué)方法和用具。
方法:歸納總結(jié),數(shù)形結(jié)合,分析驗證。
用具:幻燈片,幾何畫板,黑板。
四.教學(xué)過程。
(幻燈片見附件)。
1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學(xué)生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
函數(shù)的應(yīng)用教案篇十七
1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如的圖象.
2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
教材分析。
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究.
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議。
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是指數(shù)函數(shù).
(2)對底數(shù)的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象.
教學(xué)重點和難點。
重點是理解指數(shù)函數(shù)的定義,把握圖象和性質(zhì).
難點是認識底數(shù)對函數(shù)值影響的認識.
教學(xué)用具。
投影儀。
教學(xué)方法。
啟發(fā)討論研究式。
教學(xué)過程。
一.引入新課。
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的問題:。
由學(xué)生回答:與之間的關(guān)系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.
由學(xué)生回答:.
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).
1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關(guān)于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的.發(fā)生,所以規(guī)定且.
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以指數(shù)函數(shù)的定義域為.擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值.
(3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)。
剛才分別認識了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù).
(1),(2),(3)。
(4),(5).
學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.
最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì).
3.歸納性質(zhì)。
作圖的用什么方法.用列表描點發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答.
函數(shù)。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4.截距:在軸上沒有,在軸上為1.
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應(yīng)會證明.對于單調(diào)性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了.取點時還要提醒學(xué)生由于不具備對稱性,故的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少.
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù).連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(zhì)(板書)。
1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法.
2.草圖:。
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關(guān)于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對稱,教師借助計算機畫圖,在同一坐標(biāo)系下得到的圖象.
最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.
填好后,讓學(xué)生仿照此例再列一個的表,將相應(yīng)的內(nèi)容填好.為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì).
3.性質(zhì).
(1)無論為何值,指數(shù)函數(shù)都有定義域為,值域為,都過點.
(2)時,在定義域內(nèi)為增函數(shù),時,為減函數(shù).
(3)時,,時,.
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).
三.簡單應(yīng)用(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想指數(shù)函數(shù),提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數(shù),且。
(板書)。
教師最后再強調(diào)過程必須寫清三句話:。
(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.
(2)自變量的大小比較.
(3)函數(shù)值的大小比較.
后兩個題的過程略.要求學(xué)生仿照第(1)題敘述過程.
例2.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生指數(shù)函數(shù)的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
最后由學(xué)生說出1,1,.
解決后由教師小結(jié)比較大小的方法。
(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0.
三.鞏固練習(xí)。
練習(xí):比較下列各組數(shù)的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結(jié)。
3.簡單應(yīng)用。
函數(shù)的應(yīng)用教案篇十八
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
啟發(fā)引導(dǎo) 合作交流
課件
計算機、實物投影。
檢查預(yù)習(xí) 引出課題
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
函數(shù)的應(yīng)用教案篇十九
讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
:各種隱含條件的挖掘。
:引導(dǎo)發(fā)現(xiàn)法。
(一)診斷補償,情景引入:
(先讓學(xué)生復(fù)習(xí),然后提問,并做進一步診斷)。
(二)問題導(dǎo)航,探究釋疑:
(三)精講提煉,揭示本質(zhì):
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
解由題意,得點b的坐標(biāo)為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設(shè)二此函數(shù)的關(guān)系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。
(四)題組訓(xùn)練,拓展遷移:
1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標(biāo)是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標(biāo)可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標(biāo)和對稱軸。
函數(shù)的應(yīng)用教案篇二十
2、結(jié)合一次函數(shù)的圖像,掌握一次函數(shù)及其圖像的簡單性質(zhì)。
過程與方法目標(biāo)
1、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,增強學(xué)生數(shù)形結(jié)合的意識,培養(yǎng)學(xué)生識圖能力;
2、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,培養(yǎng)學(xué)生的觀察力、語言表達能力。
情感與態(tài)度目標(biāo)
經(jīng)歷一次函數(shù)及性質(zhì)的探索過程,在合作與交流活動中發(fā)展學(xué)生的合作意識和能力。
本節(jié)通過對一次函數(shù)圖像的研究,對一次函數(shù)的單調(diào)性作了探討;對一次函數(shù)的幾何意義也有涉及。在教學(xué)中要結(jié)合學(xué)生的認識情況,循序漸進,逐層深入,對教材內(nèi)容可作適當(dāng)增加,但不宜太難。
教學(xué)重點:結(jié)合一次函數(shù)的圖像,研究一次函數(shù)的簡單性質(zhì)。
教學(xué)難點:一次函數(shù)性質(zhì)的應(yīng)用。
學(xué)生已經(jīng)對一次函數(shù)的圖像有了一定的認識,在此基礎(chǔ)上,結(jié)合一次函數(shù)的圖像,通過問題的設(shè)計,引導(dǎo)學(xué)生探討一次函數(shù)的簡單性質(zhì),學(xué)生是較容易掌握的。
(一)做一做
在同一直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=2x+6,y=2x1,y=x+6,y=5x的圖象。
(二)議一議
上述四個函數(shù)中,隨著x值的增大,y的值分別如何變化?
學(xué)生:有的在增大,有的在減小。
學(xué)生討論:y=2x+6和y=5x這兩個一次函數(shù)在增大;y=2x1和y=x+6在減??;影響這個變化的是x前面的系數(shù)k的符號:當(dāng)k為正數(shù)時,y隨x的增大而增大;當(dāng)k為負數(shù)時,y隨x的增大而減小。
師:當(dāng)k0時,一次函數(shù)的圖象經(jīng)過哪些象限?
當(dāng)k0時,一次函數(shù)的圖象經(jīng)過哪些象限?
【本文地址:http://www.aiweibaby.com/zuowen/17435411.html】