總結(jié)是對過去一定時期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價的書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識上來,讓我們一起認(rèn)真地寫一份總結(jié)吧。那么我們該如何寫一篇較為完美的總結(jié)呢?下面是小編為大家?guī)淼目偨Y(jié)書優(yōu)秀范文,希望大家可以喜歡。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇一
1、靜態(tài)的觀點(diǎn)有兩個平行的平面,其他的面是曲面;動態(tài)的觀點(diǎn):矩形繞其一邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,象這樣的旋轉(zhuǎn)體稱為圓柱。
2、定義:以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的的曲面所圍成的旋轉(zhuǎn)體叫做圓柱,旋轉(zhuǎn)軸叫圓柱的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面叫做圓柱的底面;平行于圓柱軸的邊旋轉(zhuǎn)而成的面叫圓柱的側(cè)面,圓柱的側(cè)面又稱圓柱的面。無論轉(zhuǎn)到什么位置,不垂直于軸的邊都叫圓柱側(cè)面的母線。
表示:圓柱用表示軸的字母表示。
規(guī)定:圓柱和棱柱統(tǒng)稱為柱體。
3、靜態(tài)觀點(diǎn):有一平面,其他的面是曲面;動態(tài)的觀點(diǎn):直角三角形繞其一直角旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,像這樣的旋轉(zhuǎn)體稱為圓錐。
4、定義:以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而形成的面所圍成的旋轉(zhuǎn)體叫做圓錐。旋轉(zhuǎn)軸叫圓錐的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面成為圓錐的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫圓錐的側(cè)面,圓錐的側(cè)面又稱圓錐的面,無論旋轉(zhuǎn)到什么位置,這條邊都叫做圓錐側(cè)面的母線。
表示:圓錐用表示軸的字母表示。
規(guī)定:圓錐和棱錐統(tǒng)稱為錐體。
5、定義:以半直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫圓臺。還可以看成用平行于圓錐底面的平面截這個圓錐,截面于底面之間的部分。旋轉(zhuǎn)軸叫圓臺的軸。垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而形成的圓面稱為圓臺的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓臺的側(cè)面,無論轉(zhuǎn)到什么位置,這條邊都叫圓臺側(cè)面的母線。
表示:圓臺用表示軸的字母表示。
規(guī)定:圓臺和棱臺統(tǒng)稱為臺體。
6、定義:以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的旋轉(zhuǎn)體稱為球體,簡稱為球。半圓的圓心稱為球心,連接球面上任意一點(diǎn)與球心的線段稱為球的半徑,連接球面上兩點(diǎn)并且過球心的線段稱為球的直徑。
表示:用表示球心的字母表示。
簡單組合體的結(jié)構(gòu):
1、`由簡單幾何體組合而成的幾何體叫簡單組合體。現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。如教材圖1.1-11的前兩個圖形,他們是多面體與多面體的組合體;1.1-11的后兩個圖形,他們是由一個多面體從中截去一個或多個多面體得到的組合體。
2、常見的組合體有三種:多面體與多面體的組合;多面體與旋轉(zhuǎn)體的組合;旋轉(zhuǎn)體與旋轉(zhuǎn)體的組合。其基本形式實(shí)質(zhì)上有兩種:一種是由簡單幾何體拼接而成的簡單組合體;另一種是由簡單簡單幾何體截去或挖去一部分而成的簡單組合體。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇二
以下知識點(diǎn)需要我們?nèi)ダ斫?,記憶?、數(shù)學(xué)所說的直線是無限延伸的,沒有起點(diǎn),也沒有終點(diǎn)。
2、數(shù)學(xué)所說的平面是無限延伸的,沒有起始線,也沒有終點(diǎn)線。
3、公理1如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線在此平面內(nèi)。
4、過不在同一直線上的三點(diǎn),有且只有一個平面。
5、如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一個過該點(diǎn)的公共直線。
6、平行于同一條直線的兩條直線平行。
7、直線在平面內(nèi),因?yàn)橹本€上有無數(shù)多個點(diǎn),平面上也有無數(shù)多個點(diǎn),因此用子集的符號表示直線在平面內(nèi)。
8、直線與平面的位置關(guān)系,直線與直線的位置關(guān)系是本節(jié)課的重點(diǎn)和難點(diǎn)。
9、做位置關(guān)系的題目,可以借助實(shí)物,直觀理解。
一、直線與方程考試內(nèi)容及考試要求
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程。
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直
線的方程判斷兩條直線的位置關(guān)系。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇三
1、靜態(tài)的觀點(diǎn)有兩個平行的平面,其他的面是曲面;動態(tài)的觀點(diǎn):矩形繞其一邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,象這樣的旋轉(zhuǎn)體稱為圓柱。
2、定義:以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的的曲面所圍成的旋轉(zhuǎn)體叫做圓柱,旋轉(zhuǎn)軸叫圓柱的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面叫做圓柱的底面;平行于圓柱軸的邊旋轉(zhuǎn)而成的面叫圓柱的側(cè)面,圓柱的側(cè)面又稱圓柱的面。無論轉(zhuǎn)到什么位置,不垂直于軸的邊都叫圓柱側(cè)面的母線。
表示:圓柱用表示軸的字母表示。
規(guī)定:圓柱和棱柱統(tǒng)稱為柱體。
3、靜態(tài)觀點(diǎn):有一平面,其他的面是曲面;動態(tài)的觀點(diǎn):直角三角形繞其一直角旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,像這樣的旋轉(zhuǎn)體稱為圓錐。
4、定義:以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而形成的面所圍成的旋轉(zhuǎn)體叫做圓錐。旋轉(zhuǎn)軸叫圓錐的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面成為圓錐的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫圓錐的側(cè)面,圓錐的側(cè)面又稱圓錐的面,無論旋轉(zhuǎn)到什么位置,這條邊都叫做圓錐側(cè)面的母線。
表示:圓錐用表示軸的字母表示。
規(guī)定:圓錐和棱錐統(tǒng)稱為錐體。
5、定義:以半直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫圓臺。還可以看成用平行于圓錐底面的平面截這個圓錐,截面于底面之間的部分。旋轉(zhuǎn)軸叫圓臺的軸。垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而形成的圓面稱為圓臺的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓臺的側(cè)面,無論轉(zhuǎn)到什么位置,這條邊都叫圓臺側(cè)面的母線。
表示:圓臺用表示軸的字母表示。
規(guī)定:圓臺和棱臺統(tǒng)稱為臺體。
6、定義:以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的旋轉(zhuǎn)體稱為球體,簡稱為球。半圓的圓心稱為球心,連接球面上任意一點(diǎn)與球心的線段稱為球的半徑,連接球面上兩點(diǎn)并且過球心的線段稱為球的直徑。
表示:用表示球心的字母表示。
簡單組合體的結(jié)構(gòu):
1、`由簡單幾何體組合而成的幾何體叫簡單組合體?,F(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。如教材圖1.1-11的前兩個圖形,他們是多面體與多面體的組合體;1.1-11的后兩個圖形,他們是由一個多面體從中截去一個或多個多面體得到的組合體。
2、常見的組合體有三種:多面體與多面體的組合;多面體與旋轉(zhuǎn)體的組合;旋轉(zhuǎn)體與旋轉(zhuǎn)體的組合。其基本形式實(shí)質(zhì)上有兩種:一種是由簡單幾何體拼接而成的簡單組合體;另一種是由簡單簡單幾何體截去或挖去一部分而成的簡單組合體。
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點(diǎn)擊下載文檔
搜索文檔
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇四
1.下列幾種關(guān)于投影的說法不正確的是()
a.平行投影的投影線是互相平行的
b.中心投影的投影線是互相垂直的
c.線段上的點(diǎn)在中心投影下仍然在線段上
d.平行的直線在中心投影中不平行
2.根據(jù)下列對于幾何結(jié)構(gòu)特征的描述,說出幾何體的名稱:
(1)由7個面圍成,其中兩個面是互相平行且全等的五邊形,其他面都是全等的矩形;
(3)一個等腰直角三角形繞著底邊上所在的直線旋轉(zhuǎn)360度形成的封閉曲面所圍成的圖形.
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇五
復(fù)數(shù)知識點(diǎn)網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對此應(yīng)認(rèn)真體會復(fù)數(shù)向量運(yùn)算的幾何意義,對其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開方.有部分學(xué)生對運(yùn)算法則知道,但對其靈活地運(yùn)用有一定的困難,特別是開方運(yùn)算,應(yīng)對此認(rèn)真地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會.
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點(diǎn)內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇六
每學(xué)期結(jié)束后都會反思自己,教學(xué)上的,工作上的。這幾天要二級轉(zhuǎn)正了,又要上繳這些資料,整理一下。這學(xué)期一起帶高一的四個同事,都是很優(yōu)秀的,兩個是我以前的物理老師,一個是書記,另外一個是科組里面解題最厲害,也是我努力的目標(biāo),我的師兄,雖然大我五歲,看起來還是跟高中生沒有多大差別??赡苁歉@些高手的緣故,這學(xué)期備課我是相當(dāng)?shù)恼J(rèn)真,并沒有因?yàn)槿ツ晟线^而隨便應(yīng)付上課。
下面是我去年寫的教學(xué)反思:
1、課堂紀(jì)律要求嚴(yán)格,決不允許任何人隨意說話干擾他人。這一點(diǎn)雖然簡單但我認(rèn)為很重要,是老師能上好課、學(xué)生能聽好課的前提,總的來說,這一點(diǎn)我做得還不錯,幾個“活躍分子”都反映物理老師厲害,不敢隨便說話。
2、講課時隨時注意學(xué)生的反應(yīng),一旦發(fā)現(xiàn)學(xué)生有聽不懂的,盡量及時停下來聽聽學(xué)生的反應(yīng)。
3、盡量給學(xué)生最具條理性的筆記,便于那些學(xué)習(xí)能力較差的同學(xué)回去復(fù)習(xí),有針對性的記憶。
4、注重“情景”教學(xué)。高中物理有很多典型情景,在教學(xué)中我不斷強(qiáng)化它們,對于一些典型的復(fù)雜情景,我通常將其分解成簡單情景,提前滲透,逐步加深。每節(jié)課我說得最多的一個詞就是“情景”,每講一道題,我都會提醒學(xué)生“見過這樣的情景嗎?”“你能畫出情景圖嗎?”“注意想象和理解這個情景”。
5、重視基本概念和基本規(guī)律的教學(xué)。首先重視概念和規(guī)律的建立過程,使學(xué)生知道它們的由來;對每一個概念要弄清它的來龍去脈。在講授物理規(guī)律時不僅要讓學(xué)生掌握物理規(guī)律的表達(dá)形式,而且更要明確公式中各物理量的意義和單位,規(guī)律的適用條件及注意事項(xiàng)。了解概念、規(guī)律之間的區(qū)別與聯(lián)系,如:運(yùn)動學(xué)中速度的變化量和變化率,力與速度、加速度的關(guān)系,動能定理和機(jī)械能守恒定律的關(guān)系,通過聯(lián)系、對比,真正理解其中的道理。通過概念的形成、規(guī)律的得出、模型的建立,培養(yǎng)學(xué)生的思維能力以及科學(xué)的語言表達(dá)能力。
6、重視物理思想的建立與物理方法的訓(xùn)練。物理思想的建立與物理方法訓(xùn)練的重要途徑是講解物理習(xí)題。講解習(xí)題時把重點(diǎn)放在物理過程的分析,并把物理過程圖景化,讓學(xué)生建立正確的物理模型,形成清晰的物理過程。物理習(xí)題做示意圖是將抽象變形象、抽象變具體,建立物理模型的重要手段,從高一一開始就訓(xùn)練學(xué)生作示意圖的能力,如:運(yùn)動學(xué)習(xí)題要求學(xué)生畫運(yùn)動過程示意圖,動力學(xué)習(xí)題要求學(xué)生畫物體受力與運(yùn)動過程示意圖,并且要求學(xué)生審題時一邊讀題一邊畫圖,養(yǎng)成習(xí)慣。解題過程中,要培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解答物理問題的能力。
這一學(xué)期來,也遇到很多困難。我反思在教學(xué)中存在的問題。首先,落實(shí)不到位。本來應(yīng)該當(dāng)時落實(shí)沒能及時落實(shí)。再有就是教學(xué)過于死板,平時讓學(xué)生參與的機(jī)會較少,總是滿足于自己一言堂。不給學(xué)生機(jī)會出錯,而學(xué)生從自己的錯誤中得到的認(rèn)識會更加深刻。再者由于課時有限,沒有足夠的課堂練習(xí)時間。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇七
(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。
(7)函數(shù)總是通過(0,1)這點(diǎn)。
(8)顯然指數(shù)函數(shù)無界。
奇偶性
定義
一般地,對于函數(shù)f(x)
(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(—x)=—f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(—x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(—x)=—f(x)與f(—x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(—x)=—f(x)與f(—x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇八
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線和平面平行的定義:如果一條直線和一個平面沒有公共點(diǎn),那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇九
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)閞.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應(yīng)用】
1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
1)△0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個交點(diǎn),二次函數(shù)有兩個零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個交點(diǎn),二次函數(shù)有一個二重零點(diǎn)或二階零點(diǎn).
3)△0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇十
有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強(qiáng)自己從課本入手進(jìn)行研究的意識??梢园衙織l定理、每道例題都當(dāng)作習(xí)題,認(rèn)真地重證、重解,并適當(dāng)加些批注,特別是通過對典型例題的講解分析,最后要抽象出解決這類問題的數(shù)學(xué)思想和方法,并做好書面的解題后的反思,總結(jié)出解題的一般規(guī)律和特殊規(guī)律,以便推廣和靈活運(yùn)用。另外,學(xué)生要盡可能獨(dú)立解題,因?yàn)榍蠼膺^程,也是培養(yǎng)分析問題和解決問題能力的一個過程,同時更是一個研究過程。
首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。
其次,要提高數(shù)學(xué)能力,當(dāng)然是通過課堂來提高,要充分利用好課堂這塊陣地,學(xué)習(xí)數(shù)學(xué)的過程是活的,老師教學(xué)的對象也是活的,都在隨著教學(xué)過程的發(fā)展而變化,尤其是當(dāng)老師注重能力教學(xué)的時候,教材是反映不出來的。數(shù)學(xué)能力是隨著知識的發(fā)生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習(xí)題,都應(yīng)該從不同的能力角度來培養(yǎng)和提高。課堂上通過老師的教學(xué),理解所學(xué)內(nèi)容在教材中的地位,弄清與前后知識的聯(lián)系等,只有把握住教材,才能掌握學(xué)習(xí)的主動。
最后,在數(shù)學(xué)課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結(jié)癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性地補(bǔ),注重實(shí)效。
一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。"不會總結(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗(yàn)是成功的基石。"自然界適者生存的生物進(jìn)化過程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強(qiáng)的目的性、針對性,要落實(shí)到位。堅(jiān)持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇十一
高一新生的學(xué)習(xí)主動性太差是一個普遍存在的問題。小學(xué)生,常常是完成了作業(yè)就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學(xué)習(xí)好。高中則不然,作業(yè)雖多,但是只知做作業(yè)就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明。因此,高中新生必須提高自己學(xué)習(xí)的主動性。準(zhǔn)備向?qū)淼拇髮W(xué)生的學(xué)習(xí)方法過渡。
合理規(guī)劃步步為營
高中的學(xué)習(xí)是非常緊張的。每個學(xué)生都要投入自己的幾乎全部的精力。要想能迅速進(jìn)步,就要給自己制定一個較長遠(yuǎn)的切實(shí)可行的學(xué)習(xí)目標(biāo)和計劃,例如第一學(xué)期的期末,自己計劃達(dá)到班級的平均分?jǐn)?shù),第一學(xué)年,達(dá)到年級的前三分之一,如此等等。此外,還要給自己制定學(xué)習(xí)計劃,詳細(xì)地安排好自己的零星時間,并及時作出合理的微量調(diào)整。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇十二
1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
(1)(代數(shù)法)求方程的實(shí)數(shù)根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
(1)△0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個交點(diǎn),二次函數(shù)有兩個零點(diǎn).
(2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個交點(diǎn),二次函數(shù)有一個二重零點(diǎn)或二階零點(diǎn).
(3)△0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
猜你感興趣:
1.高一化學(xué)必修一重點(diǎn)知識點(diǎn)歸納
2.高一化學(xué)必修一重要知識點(diǎn)整理
3.高一化學(xué)必修一重點(diǎn)知識點(diǎn)
4.高中化學(xué)必修一必備知識點(diǎn)總結(jié)
5.人教版高一英語必修一知識點(diǎn)歸納
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇十三
棱錐的的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數(shù)學(xué)知識點(diǎn)總結(jié)及公式篇十四
高中學(xué)生學(xué)數(shù)學(xué)靠的也是一個字:悟!
先看筆記后做作業(yè)
有的高一學(xué)生感到,老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實(shí),天長日久,就會造成極大損失。
做題之后加強(qiáng)反思
有的學(xué)生認(rèn)為,要想學(xué)好數(shù)學(xué),只要多做題,功到自然成。其實(shí)不然。一般說做的題太少,很多熟能生巧的問題就會無從談起。因此,應(yīng)該適當(dāng)?shù)囟嘧鲱}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。打個比喻:有很多人,因?yàn)楣ぷ鞯男枰瑤缀跆焯於荚趯懽?。結(jié)果,寫了幾十年的.字了,他寫字的水平能有什么提高嗎?一般說,他寫字的水平常常還是原來的水平。也就是說多寫字不等于是受到了寫字的訓(xùn)練!要把提高當(dāng)成自己的目標(biāo),要把自己的活動合理地系統(tǒng)地組織起來,要總結(jié)反思,水平才能長進(jìn)。
主動復(fù)習(xí)總結(jié)提高
打個比方,就象女孩洗頭那樣。1、把頭發(fā)弄散亂,加以清洗。2、中間分縫。3、將其一半分股編繞,捆結(jié)固定。4、再將另一半分股編繞,捆結(jié)固定。5、疏理辮稍。6、照鏡子調(diào)整。我們進(jìn)行章節(jié)總結(jié)的過程也是大體如此。
1、要把課本,筆記,區(qū)單元測驗(yàn)試卷,校周末測驗(yàn)試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標(biāo)記,標(biāo)明哪些是過一會兒要摘錄的。要養(yǎng)成一個習(xí)慣,在讀材料時隨時做標(biāo)記,告訴自己下次再讀這份材料時的閱讀重點(diǎn)。長期保持這個習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨(dú)特的,也就是最適合自己進(jìn)行復(fù)習(xí)的材料。這樣積累起來的資料才有活力,才能用的上。
2、把本章節(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識,一部分是典型問題。要把對技能的要求,列進(jìn)這兩部分中的一部分,不要遺漏。
3、在基礎(chǔ)知識的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會兩用。即:會文字表述,會圖象符號表述,會推導(dǎo)證明。同時能從正反兩方面對其進(jìn)行應(yīng)用。
4、把重要的,典型的各種問題進(jìn)行編隊(duì)。要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問題間的來龍去脈。就象我們欣賞一場團(tuán)體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什么動作。我們一定要居高臨下地看,看全場的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無益。這一點(diǎn),是提高高中數(shù)學(xué)水平的關(guān)鍵所在。
5、總結(jié)那些尚未歸類的問題,作為備注進(jìn)行補(bǔ)充說明。
6、找一份適當(dāng)?shù)臏y驗(yàn)試卷,例如北京四中的本章節(jié)測試試卷,電腦網(wǎng)校的本節(jié)試卷,我校去年此時所用的試卷。一定要計時測驗(yàn)。然后再對照答案,查漏補(bǔ)缺。
【本文地址:http://www.aiweibaby.com/zuowen/17497582.html】