指數(shù)數(shù)學教案(通用13篇)

格式:DOC 上傳日期:2023-12-10 08:36:11
指數(shù)數(shù)學教案(通用13篇)
時間:2023-12-10 08:36:11     小編:飛雪

教案應當具備一定的靈活性,能夠根據(jù)實際情況進行調(diào)整和改進。教案的編寫過程中,教師可以參考其他教師的教案范例和教學經(jīng)驗,以獲得更多的靈感和啟示。接下來是小編為大家整理的一些優(yōu)秀教案范文,希望能夠給大家的教學活動提供一些參考。

指數(shù)數(shù)學教案篇一

一、教學目標:

知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學生實際應用函數(shù)的能力。

過程與方法:通過觀察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領會數(shù)形結(jié)合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)、分析、解決問題的能力。

情感態(tài)度與價值觀:在指數(shù)函數(shù)的學習過程中,體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

二、教學重點、難點:

教學難點:對底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。

三、教學過程:

(一)創(chuàng)設情景。

學生回答:y與x之間的關(guān)系式,可以表示為y=2x。

問題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過一年剩留的質(zhì)量約是原來的84%。求出這種物質(zhì)的剩留量隨時間(單位:年)變化的函數(shù)關(guān)系。設最初的質(zhì)量為1,時間變量用x表示,剩留量用y表示。

學生回答:y與x之間的關(guān)系式,可以表示為y=0.84x。

引導學生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。

問題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會出現(xiàn)什么情況?

(1)若a0會有什么問題?

x1則在實數(shù)范圍內(nèi)相應的函數(shù)值不存在)2(2)若a=0會有什么問題?(對于x0,a無意義)。

(3)若a=1又會怎么樣?(1x無論x取何值,它總是1,對它沒有研究的必要。)。

師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。

1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大?。?/p>

設計意圖:這是指數(shù)函數(shù)性質(zhì)的簡單應用,使學生在解題過程中加深對指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。

(五)課堂小結(jié)。

(六)布置作業(yè)。

指數(shù)數(shù)學教案篇二

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如。

的圖象.

2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.

3.通過對指數(shù)函數(shù)的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.

教學建議。

教材分析。

(1)指數(shù)函數(shù)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產(chǎn)實際中有著廣泛的應用,所以指數(shù)函數(shù)應重點研究.

(2)本節(jié)的教學重點是在理解指數(shù)函數(shù)定義的基礎上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點差異,諸如。

(2)對底數(shù)。

的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.

指數(shù)數(shù)學教案篇三

尊敬的評委老師,大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。

總結(jié)語。

為了更好的呈現(xiàn)我的教學思路,我將以教什么、怎么教以及為什么這么教為思路,具體從教材分析、教學目標分析、學情分析、教法、學法以及教學過程等幾個方面展開我的說課。

教材分析。

教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學必修一第二章第六節(jié)。在漫長的高中數(shù)學學習的過程中,函數(shù)的學習貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進行了排布。而本節(jié)課指數(shù)函數(shù)的學習則對接下來對數(shù)函數(shù)等復雜函數(shù)的深入學習奠定了堅實的基礎??梢哉f,指數(shù)函數(shù)的學習對于高中函數(shù)的學習起到了承上啟下的重要作用。

學情分析。

新的學生觀告訴我們,我們要在課堂中充分發(fā)揮學生的主體地位,因此對于學生的情況了解也是十分重要的。從思維層面上看,高中的學生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學生好勝心比較強,容易產(chǎn)生負面情緒,這對于我們課堂的教學也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學習中,學生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學生的學習、老師的教授都提出了較高的要求,因此合理的教法學法選擇顯得尤為重要。

教學目標。

教學目標是教育教學活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學目標如下:

知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。

過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學生觀察,聯(lián)想,類比,猜測,歸納的能力。

情感態(tài)度與價值觀目標:通過教學互動,促進師生情感,激發(fā)學生的學習興趣,提高學生的抽象概括,分析,綜合的能力,培養(yǎng)學生聯(lián)系觀點看問題,領會數(shù)學科學的應用價值。

而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。

正如蘇霍姆林斯基所說:只有能夠激發(fā)學生去進行自我教育的教育,才是真正的教育。在滿足學習者需求的基礎之上,我將制定適合本階段學生的教法來展開教學,以體現(xiàn)教師的主導性。分別以圖片展示、討論、講授、參與練習等相結(jié)合的方式進行教學。同時我將采用誘思探究和自主學習相結(jié)合的方式,以激發(fā)學生的學習主動性,充分地體現(xiàn)學生的主體地位。

教學過程。

以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學過程的設計。

首先創(chuàng)設情境,導入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學生的學習興趣,培養(yǎng)學生思維的主動性,為接下來的學習做好準備。

其次啟發(fā)誘導,探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學們通過動手,促進學生對本課內(nèi)容的理解學習,并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學知識的性質(zhì),也能對于接下來的知識點導入起到自然結(jié)合的作用。當然學生通過我的引導交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。

接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學生學習:實踐到認識再到實踐的過程。通過練習實現(xiàn)教師的再指導和學生的漸進式提高。這個環(huán)節(jié)介紹的化學知識在考古中的應用,這樣的設計既開拓了學生的視野,又為下一步學習:計算分期付款的利率等問題埋下伏筆,因此學生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學的應用價值。緊接著我會帶領學生進行歸納,總結(jié)升華我會將同學們進行分組討論、探究,引導學生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設置分組pk機制,引導學生對課堂知識進行分類討論、數(shù)形結(jié)合等數(shù)學方法的歸納。最后我會布置課后作業(yè)以幫助學生鞏固練習,溫故而知新。

板書設計。

當然一堂完整的課程離不開簡潔明了的板書設計,我的板書設計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習過程中寫下今天練習的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設計,可以幫助學生更好地學習本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。

指數(shù)數(shù)學教案篇四

1、使學生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。

(2)能在基本性質(zhì)的指導下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì)。

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如。

的圖象。

2、通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。

3、通過對指數(shù)函數(shù)的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。

教材分析。

(1)指數(shù)函數(shù)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產(chǎn)實際中有著廣泛的應用,所以指數(shù)函數(shù)應重點研究。

時,函數(shù)值變化情況的區(qū)分。

(3)指數(shù)函數(shù)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點差異,諸如。

(2)對底數(shù)。

的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。

指數(shù)數(shù)學教案篇五

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎上能進行初步的應用.

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性.

教學建議。

教材分析。

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的.故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎.

(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎上,故應成為教學的重點.

(1)對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

指數(shù)數(shù)學教案篇六

講授新課前,做一份完美的教案,能夠更大程度的調(diào)動學生在上課時的積極性,以下是白話文為大家整理的人教版高一數(shù)學《指數(shù)函數(shù)》教案,希望可以幫助到有需要的朋友。

1。使學生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì)。

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象。

2。通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。

3。通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。

(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產(chǎn)實際中有著廣泛的應用,所以應重點研究。

(2)本節(jié)的教學重點是在理解定義的基礎上掌握的圖象和性質(zhì)。難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分。

(3)是學生完全陌生的一類函數(shù),對于這樣的.函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是。

(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。

關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。

1。理解的定義,初步掌握的圖象,性質(zhì)及其簡單應用。

2。通過的圖象和性質(zhì)的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。

3。通過對的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣。

重點是理解的定義,把握圖象和性質(zhì)。

難點是認識底數(shù)對函數(shù)值影響的認識。

投影儀。

啟發(fā)討論研究式。

一。引入新課。

我們前面學習了指數(shù)運算,在此基礎上,今天我們要來研究一類新的常見函數(shù)———————。

1。6。(板書)。

這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:

由學生回答:與之間的關(guān)系式,可以表示為。

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系。

由學生回答:。

在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。

一。的概念(板書)。

1。定義:形如的函數(shù)稱為。(板書)。

教師在給出定義之后再對定義作幾點說明。

2。幾點說明(板書)。

(1)關(guān)于對的規(guī)定:

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內(nèi)相應的函數(shù)值不存在。

若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。

(2)關(guān)于的定義域(板書)。

教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為。擴充的另一個原因是因為使她它更具代表更有應用價值。

(3)關(guān)于是否是的判斷(板書)。

剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。

(1),?(2),?(3)。

(4),?(5)。

學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象。

最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì)。

3。歸納性質(zhì)。

作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學生回答。

函數(shù)。

1。定義域:

2。值域:

3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4。截距:在軸上沒有,在軸上為1。

對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數(shù)圖象畫圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。

在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。

此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(zhì)(板書)。

1。圖象的畫法:性質(zhì)指導下的列表描點法。

2。草圖:

當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例。

此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即=與圖象之間關(guān)于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象。

最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:

以上內(nèi)容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學生仿照此例再列一個的表,將相應的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。

3。性質(zhì)。

(1)無論為何值,都有定義域為,值域為,都過點。

(2)時,在定義域內(nèi)為增函數(shù),時,為減函數(shù)。

(3)時,,???時,。

總結(jié)之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三。簡單應用??(板書)。

1。利用單調(diào)性比大小。?(板書)。

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

例1。比較下列各組數(shù)的大小。

(1)與;?(2)與;。

(3)與1。(板書)。

首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。

解:在上是增函數(shù),且。

(板書)。

教師最后再強調(diào)過程必須寫清三句話:

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應的單調(diào)性。

(2)自變量的大小比較。

(3)函數(shù)值的大小比較。

后兩個題的過程略。要求學生仿照第(1)題敘述過程。

例2。比較下列各組數(shù)的大小。

(1)與;?(2)與?;。

(3)與。(板書)。

先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導學生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學生思考解決。(教師可提示學生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。

最后由學生說出1,1,。

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0。

三。鞏固練習。

練習:比較下列各組數(shù)的大?。ò鍟?。

(1)與???(2)與;。

(3)與;(4)與。解答過程略。

四。小結(jié)。

1。的概念。

2。的圖象和性質(zhì)。

3。簡單應用。

五。板書設計。

指數(shù)數(shù)學教案篇七

這一節(jié)的重點就是鈉的化學性質(zhì)——與水反應,還有鈉的物理性質(zhì)——顏色。難點就是鈉與氧氣在充足及過量時候的反應,還有就是實驗,由于反應速度快,難以觀察,最后就是反應的化學方程式。

三教學理念及其方法。

對反應速度快這個問題可以通過慢放實驗的動化,使學生能看清楚過程。

2涉及原子等微觀粒子的結(jié)合過程,需要很強的空間想象力,可以通過計算機動畫演示,使反應變得直觀,更容易理解。

3對于鈉與水的反應,具有一定的危險性,可以通過動畫來展示實驗不當造成的后果。

四教學過程。

2再以水滅火圖片給學生觀看,然后以鈉放入水中為參比,激發(fā)學生的興趣。

3再通過一些趣味性實驗演示,能更進一步激發(fā)學習的積極性,例如用一裝有半瓶水的塑料瓶,瓶塞上扎一黃豆大的鈉的大頭針,瓶倒置使鈉和水充分反應,取下塞子、點燃火柴靠近瓶口有尖銳的爆鳴聲,效果得到大大改進。

五學法分析。

通過這節(jié)課的教學教給學生對金屬鈉的認識,掌握金屬鈉的性質(zhì),透過現(xiàn)象看本質(zhì),分析、歸納物質(zhì)的性質(zhì),培養(yǎng)學生觀察、分析問題的能力,調(diào)動學生積極性,激發(fā)學生的學習興趣。

五總結(jié)性質(zhì),得出結(jié)論,布置作業(yè)。

列出來,這樣條理就清晰了,然后再總述一下這節(jié)所學的內(nèi)容,講述的重點及難點。最后布置2個思考題:

(1)鈉為什么保存在煤油中?

(2)把鈉投到苯和水的混合液中鈉在水和苯間跳上“水上芭蕾”,為什么?

再講一下鈉的用途。

六板書設計。

板書設計第一節(jié)鈉。

一、鈉的物理性質(zhì)。

二、鈉的化學性質(zhì)。

1鈉的原子結(jié)構(gòu)。

2鈉與氧氣反應(條件不同,產(chǎn)物不同)。

3鈉與水反應(重點)。

指數(shù)數(shù)學教案篇八

【知識與技能】在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑。掌握方程表示圓的條件。

【情感態(tài)度與價值觀】滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學思想方法,提高學生的整體素質(zhì),激勵學生創(chuàng)新,勇于探索。

二、教學重難點。

【重點】掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程?!倦y點】二元二次方程與圓的一般方程及標準圓方程的關(guān)系。

三、教學過程。

(一)復習舊知,引出課題。

1.復習圓的標準方程,圓心、半徑。

2.提問1:已知圓心為(1,-2)、半徑為2的圓的方程是什么?(二)交流討論,探究新知1.提問2:方程是什么圖形?方程表示什么圖形?任何圓的方程都是這樣的二元二次方程嗎?(通過此例分析引導學生使用配方法)2.方程什么條件下表示圓?(配方和展開由學生相互討論交流完成,教師最后展示結(jié)果)將配方得:

3.學生在教師的引導下對方程分類討論,最后師生共同總結(jié)出3種情況,即圓的一般方程表示圓的條件。從而得出圓的一般方程式:

4.由學生歸納圓的一般方程的特點,師生共同總結(jié)。(三)例題講解,深化新知。

例1.判斷下列二元二次方程是否表示圓的方程?如果是,請求出圓的圓心及半徑。

(1)(2)例2.求過三點a(0,0),b(1,1),c(4,2)的圓的方程,并求這個圓的半徑長和圓心坐標。

(四)小結(jié)作業(yè)。

師生共同總結(jié)今天這節(jié)課所學知識點作業(yè):分必做題和選做題。

四、板書設計。

五、教學反思。

指數(shù)數(shù)學教案篇九

2、能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題。

一、情境創(chuàng)設。

二、數(shù)學應用與建構(gòu)。

例1、解不等式:

小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關(guān)鍵是底數(shù)所在的范圍。

例2、說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖。

小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移,y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移)。

練習:

(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)x的圖象。

(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)y的圖象。

(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是()。

(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是(),函數(shù)y=a2x—1的圖象恒過的定點的坐標是()。

小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口。

(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?

(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x—1|的圖象?

小結(jié):函數(shù)圖象的.對稱變換規(guī)律。

例3、已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1—2x,試畫出此函數(shù)的圖象。

例4、求函數(shù)的最小值以及取得最小值時的x值。

小結(jié):復合函數(shù)常常需要換元來求解其最值。

練習:

(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于();

(2)函數(shù)y=2x的值域為();

(4)當x0時,函數(shù)f(x)=(a2—1)x的值總大于1,求實數(shù)a的取值范圍。

3、指數(shù)型函數(shù)的草圖及其變換規(guī)律。

課本p55—6、7。

(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x)的定義域為?

(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較函數(shù)的大小。

指數(shù)數(shù)學教案篇十

1.初步體驗數(shù)量比1多的物品可以分成兩個部分。

2.在活動中學習6的分解、組合。

3.通過感知分解、組合的關(guān)系,提高對數(shù)學活動的興趣。

教學課件、“數(shù)字卡片 分合號”

彩色小棒(數(shù)量為人數(shù)的5倍,可用彩紙卷成)

1.教師:小朋友好!告訴大家一個好消息:米奇請我們?nèi)ニ拿蠲钗葑隹?。我們現(xiàn)在就坐汽車去吧!

2.師幼開汽車進入活動室。(播放課件2(妙妙屋)

1.學習6的分解、組合。

(3)我們請米奇幫我們來分一分吧,看一看他和我們分的是不是一樣的!

2.學習記錄6的分合。

(1)教師:怎樣把大家分“6”的幾種情況記錄下來呢?

(2)教師介紹分合符號,示范規(guī)范的分合式及讀法,如6可以分成1和5,1和5合起來就是6。(播放課件3和4“分蘋果”)

(3)請幼兒讀一讀6的分合。(播放課件5)

1.教師:米奇要做一些有趣的方向盤,我們一起來制作方向盤吧?。úシ耪n件6)

2.操作要求:每個方向盤上都要有6個圓點,請你說一說應該補上幾個圓點才有6個圓點,再把分合式補充完整。(播放課件7)

3.教師:把“6”分成兩份,有幾鐘分法?(教師逐一播放課件8――12)

1.教師:米奇準備了好多彩棒呀!我們一起來玩“分彩棒”的游戲吧!(播放課件13)

2.游戲:分彩棒

請5名幼兒分別舉起數(shù)字6的五種分合式站在教室的四個角落及中間,其余幼兒每人拿6根彩棒,將彩棒隨意分成2份,左手中的彩棒數(shù)量為一個部分數(shù),右手中的彩棒數(shù)量為另一個部分數(shù)。然后站到對應的那一鐘分合式里。

指數(shù)數(shù)學教案篇十一

尊敬的評委老師,大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。

教材分析。

教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學必修一第二章第六節(jié)。在漫長的高中數(shù)學學習的過程中,函數(shù)的學習貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進行了排布。而本節(jié)課指數(shù)函數(shù)的學習則對接下來對數(shù)函數(shù)等復雜函數(shù)的深入學習奠定了堅實的基礎。可以說,指數(shù)函數(shù)的學習對于高中函數(shù)的學習起到了承上啟下的重要作用。

學情分析。

新的學生觀告訴我們,我們要在課堂中充分發(fā)揮學生的主體地位,因此對于學生的情況了解也是十分重要的。從思維層面上看,高中的學生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的'理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學生好勝心比較強,容易產(chǎn)生負面情緒,這對于我們課堂的教學也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學習中,學生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學生的學習、老師的教授都提出了較高的要求,因此合理的教法學法選擇顯得尤為重要。

教學目標。

教學目標是教育教學活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學目標如下:

知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。

過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學生觀察,聯(lián)想,類比,猜測,歸納的能力。

情感態(tài)度與價值觀目標:通過教學互動,促進師生情感,激發(fā)學生的學習興趣,提高學生的抽象概括,分析,綜合的能力,培養(yǎng)學生聯(lián)系觀點看問題,領會數(shù)學科學的應用價值。

而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。

正如蘇霍姆林斯基所說:只有能夠激發(fā)學生去進行自我教育的教育,才是真正的教育。在滿足學習者需求的基礎之上,我將制定適合本階段學生的教法來展開教學,以體現(xiàn)教師的主導性。分別以圖片展示、討論、講授、參與練習等相結(jié)合的方式進行教學。同時我將采用誘思探究和自主學習相結(jié)合的方式,以激發(fā)學生的學習主動性,充分地體現(xiàn)學生的主體地位。

教學過程。

以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學過程的設計。

首先創(chuàng)設情境,導入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學生的學習興趣,培養(yǎng)學生思維的主動性,為接下來的學習做好準備。

其次啟發(fā)誘導,探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學們通過動手,促進學生對本課內(nèi)容的理解學習,并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學知識的性質(zhì),也能對于接下來的知識點導入起到自然結(jié)合的作用。當然學生通過我的引導交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。

接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學生學習:實踐到認識再到實踐的過程。通過練習實現(xiàn)教師的再指導和學生的漸進式提高。這個環(huán)節(jié)介紹的化學知識在考古中的應用,這樣的設計既開拓了學生的視野,又為下一步學習:計算分期付款的利率等問題埋下伏筆,因此學生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學的應用價值。緊接著我會帶領學生進行歸納,總結(jié)升華我會將同學們進行分組討論、探究,引導學生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設置分組pk機制,引導學生對課堂知識進行分類討論、數(shù)形結(jié)合等數(shù)學方法的歸納。最后我會布置課后作業(yè)以幫助學生鞏固練習,溫故而知新。

板書設計。

當然一堂完整的課程離不開簡潔明了的板書設計,我的板書設計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習過程中寫下今天練習的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設計,可以幫助學生更好地學習本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。

指數(shù)數(shù)學教案篇十二

(1)正確理解乘方、冪、指數(shù)、底數(shù)等概念。

(2)會進行有理數(shù)乘方的運算。

通過對乘方意義的理解,培養(yǎng)學生觀察比較、分析、歸納概括的能力,滲透轉(zhuǎn)化思想。

培養(yǎng)探索精神,體驗小組交流、合作學習的重要性。

教學重、難點與關(guān)鍵。

1.重點:正確理解乘方的意義,掌握乘方運算法則。

2.難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算。

3.關(guān)鍵:弄清底數(shù)、指數(shù)、冪等概念,注意區(qū)別-an與(-a)n的意義。

1.幾個不等于零的有理數(shù)相乘,積的符號是怎樣確定的`?

幾個不等于零的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)確定,當負因數(shù)的個數(shù)為奇數(shù)時,積為負;當負因數(shù)的個數(shù)為偶數(shù)時,積為正。

2.正方形的邊長為2,則面積是多少?棱長為2的正方體,則體積為多少?

邊長為a的正方形的面積是aa,棱長為a的正方體的體積是aaa.

aa簡記作a2,讀作a的平方(或二次方)。

aaa簡記作a3,讀作a的立方(或三次方)。

一般地,幾個相同的因數(shù)a相乘,記作an.即aaa.這種求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。

在an中,a叫底數(shù),n叫做指數(shù),當an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。

指數(shù)數(shù)學教案篇十三

教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學必修一第二章第六節(jié)。在漫長的高中數(shù)學學習的過程中,函數(shù)的學習貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進行了排布。而本節(jié)課指數(shù)函數(shù)的學習則對接下來對數(shù)函數(shù)等復雜函數(shù)的深入學習奠定了堅實的基礎??梢哉f,指數(shù)函數(shù)的學習對于高中函數(shù)的學習起到了承上啟下的重要作用。

新的學生觀告訴我們,我們要在課堂中充分發(fā)揮學生的主體地位,因此對于學生的情況了解也是十分重要的。從思維層面上看,高中的學生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學生好勝心比較強,容易產(chǎn)生負面情緒,這對于我們課堂的教學也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學習中,學生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學生的學習、老師的教授都提出了較高的要求,因此合理的教法學法選擇顯得尤為重要。

教學目標是教育教學活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學目標如下:

知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。

過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學生觀察,聯(lián)想,類比,猜測,歸納的能力。

情感態(tài)度與價值觀目標:通過教學互動,促進師生情感,激發(fā)學生的學習興趣,提高學生的抽象概括,分析,綜合的能力,培養(yǎng)學生聯(lián)系觀點看問題,領會數(shù)學科學的應用價值。

而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。

正如蘇霍姆林斯基所說:只有能夠激發(fā)學生去進行自我教育的教育,才是真正的教育。在滿足學習者需求的基礎之上,我將制定適合本階段學生的教法來展開教學,以體現(xiàn)教師的主導性。分別以圖片展示、討論、講授、參與練習等相結(jié)合的方式進行教學。同時我將采用誘思探究和自主學習相結(jié)合的方式,以激發(fā)學生的學習主動性,充分地體現(xiàn)學生的主體地位。

以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學過程的設計。

首先創(chuàng)設情境,導入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學生的學習興趣,培養(yǎng)學生思維的主動性,為接下來的學習做好準備。

其次啟發(fā)誘導,探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學們通過動手,促進學生對本課內(nèi)容的理解學習,并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學知識的性質(zhì),也能對于接下來的知識點導入起到自然結(jié)合的作用。當然學生通過我的引導交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。

接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學生學習:實踐到認識再到實踐的過程。通過練習實現(xiàn)教師的再指導和學生的漸進式提高。這個環(huán)節(jié)介紹的化學知識在考古中的應用,這樣的設計既開拓了學生的視野,又為下一步學習:計算分期付款的利率等問題埋下伏筆,因此學生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學的應用價值。緊接著我會帶領學生進行歸納,總結(jié)升華我會將同學們進行分組討論、探究,引導學生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設置分組pk機制,引導學生對課堂知識進行分類討論、數(shù)形結(jié)合等數(shù)學方法的歸納。最后我會布置課后作業(yè)以幫助學生鞏固練習,溫故而知新。

當然一堂完整的課程離不開簡潔明了的板書設計,我的板書設計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習過程中寫下今天練習的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設計,可以幫助學生更好地學習本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。

【本文地址:http://www.aiweibaby.com/zuowen/18383124.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔