最熱高三數(shù)學專題課教案(匯總19篇)

格式:DOC 上傳日期:2023-10-30 19:32:22
最熱高三數(shù)學專題課教案(匯總19篇)
時間:2023-10-30 19:32:22     小編:FS文字使者

教案的編寫需要綜合考慮學生的學情和興趣,確保教學內(nèi)容與學生的需求相匹配。那么我們應該如何編寫一份優(yōu)秀的教案呢?首先,我們需要明確教學目標,明確要教授的知識點、能力和情感態(tài)度目標。其次,根據(jù)學生的實際情況,合理選擇教學方法和教學手段。還需要根據(jù)課程標準和學生的學習需要,設計有趣、生動的教學活動。編寫教案要注意語言簡潔明了,結(jié)構(gòu)合理,操作性強。希望通過這些努力,我們能夠編寫出一份完美的教案。以下是小編為大家收集的優(yōu)秀教案范文,僅供參考,希望對大家有所幫助。

高三數(shù)學專題課教案篇一

教學設計示例

一、素質(zhì)教育目標

(一)知識教學點

1.了解直線的概念.

2.掌握直線的表示方法,直線的公理和相交直線的概念.

3.使學生熟悉簡單的幾何語句,并能畫出正確的圖形表示幾何語句.

(二)能力訓練點

通過一些幾何語句(如:某點在直線上,即直線“經(jīng)過”這點;過兩點有且只有一條直線,“有且只有”的雙重含義,即存在性和惟一性)的教學,訓練學生準確地使用幾何語言,并能畫出正確的幾何圖形.學生通過“說”與“畫”的嘗試實踐,體驗領悟到“言”與“圖”的辯證統(tǒng)一.通過教學培養(yǎng)學生嚴謹?shù)膶W習作風、嚴密的思考方法及邏輯思維能力,這也是學習好數(shù)學必備的基本素質(zhì).

(三)德育滲透點

通過直線公理的講解,舉出實例說明它的應用.使學生體驗到從實踐到理論,在理論指導下再進行實踐的認識過程,潛移默化地影響學生,形成其理論聯(lián)系實際的思想方法,激勵學生要勤于動腦、敢于實踐.

(四)美育滲透點

通過對模型的觀察,使學生體會物體的對稱美,通過學生自己動手畫直線體會直線美,逐步培養(yǎng)學生的幾何美,激發(fā)學生的學習興趣.

二、學法引導

1.教師教法:引導學生發(fā)現(xiàn)知識,并嘗試指導與閱讀相結(jié)合.

2.學生學法:自主式學習方法(學生自己閱讀書本知識,總結(jié)學習成果)和小組討論式學習方法.

三、重點、難點、疑點及解決辦法

(-)重點

直線的表示方法,直線的公理及相交線.

(二)難點

兩直線相交為什么只有一個交點的理解,直線公理的理解.

(三)疑點

兩直線相交為什么只有一個交點?

(四)解決辦法

通過實驗法解決直線公理的理解;通過逆向思維解決兩直線相交為什么只有一個交點的疑點.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片(軟盤)、三角板、木條、鐵釘.

六、師生互動活動設計

七、教學步驟

(一)明確目標

通過知識點教學,使學生理解和掌握直線及其性質(zhì),通過畫圖及對幾何語言的認識培養(yǎng)學生圖形結(jié)合的數(shù)學思維方式.

(二)整體感知

以情境教學為主,教師引導和指導,學生積極參與,逐步領悟,教師概括總結(jié)和學生自我學習評價相結(jié)合,提高課堂教學效益,充分體現(xiàn)以學為主的原則.

(三)教學過程

創(chuàng)設情境,引出課題

問題:投影儀顯示本章開始的正十二面體的模型,學生觀察這一復雜圖形中有哪些是我們認識的簡單圖形?(學生會很快找出線段和角.)

演示:投影從正十二面體的模型中分離出某一部分,即線段、角.

引出課題:要掌握比較復雜的圖形知識,需要從較簡單的圖形學起.本章我們就學習最簡單的圖形知識,即線段和角的知識,也就是我們從復雜圖形中分離出來的兩個圖形.在這個基礎上,以后我們再學習相交線、三角形、四邊形等等.

?板書】第一章線段角一、直線射線線段1.1直線

探究新知

1.直線的概念

?教法說明】學生有小學的基礎,會很快說出一些實際例子,如:黑板邊緣、書本邊緣、拉直的線、筆直的公路等等.教師要調(diào)動學生學習的積極性,引導學生展開想像的翅膀,充分發(fā)揮他們的想像力.

演示:學生發(fā)言的同時,教師利用電腦顯示一些實例,如:黑板、書本、筆直公路等等.然后變換抽象成一直線.

師:我們在代數(shù)中,常用一條特殊的直線,你知道嗎?

(學生會回想起數(shù)軸的概念,規(guī)定了原點、正方向和單位長度的直線.)

師小結(jié):同學們回答得都很好,幾何中的“直線”是向兩方無限延伸的,我們可以用直尺畫直線,但畫出的只是直線的一部分.

2.直線的表示方法

學生活動:學生閱讀課本第9頁第四自然段,總結(jié)直線的表示方法.

?教法說明】對于直線的表示方法很簡單,教師直接告訴學生,學生也會理解.但記憶不一定深,這種采取讓學生自己閱讀的方法,一是培養(yǎng)學生看書的習慣;二是培養(yǎng)學生的閱讀能力,使學生愛看書且會看書.自己學到的知識要比教師直接告訴的記憶深刻得多.

由學生小結(jié),得出直線的兩種表示方法:

(1)用直線上的兩個大寫字母表示.如圖:記作直線.

(2)用一個小寫字母表示.如圖:記作直線.

?教法說明】用字母表示圖形,小學沒有介紹,現(xiàn)在學生初步接觸,所以教師這里要補充說明點的表示方法.同時指出:以后學習中,常用字母表示幾何圖形,便于說明與研究.

3.點和直線的位置

師生共同總結(jié):

(1)點在直線上,如圖,敘述方法:點在直線上,或直線經(jīng)過點.

(2)點在直線外,如圖,敘述方法:點在直線外,或直線不經(jīng)過點.

?教法說明】在點和直線的位置關(guān)系中,要注意幾何語言的訓練.點在直線上和點在直線外,各有兩種不同的敘述方法,要反復練習,以培養(yǎng)他們幾何語言的表達能力.

4.直線的公理

實驗嘗試:用一個鐵釘把木條釘在小黑板上,讓學生轉(zhuǎn)動木條,并觀察現(xiàn)象.教師在木條上加上一個釘子,再讓學生轉(zhuǎn)動,并觀察現(xiàn)象.

提出問題:以上實驗你認為說明了什么道理?

學生活動:學生分組討論,相互糾正或補充.

師小結(jié):經(jīng)過一點有無數(shù)條直線,經(jīng)過兩點有一條直線,并且只有一條直線.同時板書公理內(nèi)容.

[板書]公理:經(jīng)過兩點有一條直線,并且只有一條直線.簡言之,過兩點有且只有一條直線.

體驗證實:教師小結(jié)后讓學生在練習本上分別經(jīng)過一點和兩點畫直線.

?教法說明】(1)學生通過實驗,對直線公理有認識,但欲言之而不能,或雖能表達出意思但不嚴密.此時離不開教師的引導,教師一定要強調(diào)幾何語言的嚴密性和準確性.向?qū)W生們講清“有且只有”的兩層含義.第一個“有”說明的是存在性,過兩點有直線存在.“只有”說明的是惟一性,經(jīng)過兩點的直線不會多,只有一條.如果把直線公理說成是:“經(jīng)過兩點有一條直線”就是錯誤的.了.(2)公理得出后,讓學生再次動手驗證,使學生體會到公理的科學性,培養(yǎng)學生對待事物的科學態(tài)度,也便于學生對公理的記憶.(3)通過教師指導下的實驗活動,激發(fā)了學生的學習興趣,培養(yǎng)了學生勇于探索的精神,提高獨立分析問題解決問題的能力.

?教法說明】通過公理在日常生活中的應用舉例,使學生明白科學來源于生活并服務于生活的道理.只有現(xiàn)在好好學習,積累本領,長大后才能更好地報效祖國.并體會從實踐到理論,再回到實踐的認識過程.

5.相交線

師:根據(jù)直線公理,過兩點有幾條直線?

(學生會答出:有且只有一條.)

師:反過來,兩條不同的直線可能同時經(jīng)過兩個點嗎?

(學生容易答出:不能)

[板書]如果兩條直線有一個交點,我們叫這兩條直線相交.這個公共點叫做它們的交點,這兩條直線叫相交直線.

如圖,直線和直線相交于點,點是直線和直線的交點.

?教法說明】兩直線相交為什么只有一個交點,是本節(jié)課的難點.從公理入手提出問題,再反過來考慮,這種逆向思維的方法使學生易于理解,突破難點,問題得以解決.

反饋練習

(出示投影1)

1.問答題

(1)經(jīng)過一點能否畫直線?能畫幾條?

(2)經(jīng)過兩點能否畫直線?能畫幾條?

(3)只用直線上的一個點來表示直線是否可以?用直線上的兩個點表示直線呢?

2.讀出下列語句,并按照這些語句畫圖

(1)直線經(jīng)過點.

(2)點在直線外.

(3)經(jīng)過點的三條直線.

(4)直線與相交于點.

(5)直線經(jīng)過、、三點,點在點與點之間.

(6)是直線外一點,過點有一直線與直線相交于點.

?教法說明】問答題的目的是進一步理解鞏固直線公理,作圖的目的是訓練學生的“言”與“圖”的轉(zhuǎn)化能力.

(四)總結(jié)、擴展

以提問的形式,歸納出以下知識點:

八、布置作業(yè)

預習下節(jié)內(nèi)容

補充:按照下面的圖形說出幾何語句.

(1)(2)

(3)(4)

(5)

附答案

補充:(1)直線過(點在直線上).

(2)點在直線外(直線不過點).

(3)直線、相交于點.

(4)直線過、、三點.

(5)直線、、、都過點.

思考題:課本第16頁b組的第2題.

高三數(shù)學專題課教案篇二

一、教學目標

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養(yǎng)學生的學習愛好.

4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.

二、教法設計

觀察分析討論相結(jié)合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的判定方法.

2.教學難點:菱形判定方法的綜合應用.

四、課時安排

1課時

五、教具學具預備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

復習提問

1.敘述菱形的定義與性質(zhì).

2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.

引入新課

師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學習這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個條件?

生答:兩個.

師問:哪兩個?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學生口述證實)

證實時讓學生注重線段垂直平分線在這里的應用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線,但都不是菱形.

菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):

注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.

求證:四邊形是菱形(按教材講解).

總結(jié)、擴展

1.小結(jié):

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.

2.思考題:已知:如圖4△中,,平分,,,交于.

求證:四邊形為菱形.

八、布置作業(yè)

教材p159中9、10、11、13(2)

九、板書設計

十、隨堂練習

教材p153中1、2、3

高三數(shù)學專題課教案篇三

學習目標1、通過講評使學生進一步理解周長的含義,進一步鞏固對長方形、正方形周長的計算及應用。

2、抓住典型題目和共性問題,引導學生把握解題思路,總結(jié)解題一般規(guī)律,培養(yǎng)學生靈活的思維能力。重點理解周長的意義鞏固長方形、正方形周長的計算公式及其在實際生活中的靈活應用教學法分析總結(jié)合作交流難點通過處理典型題目和共性問題,引導學生把握解題思路,培養(yǎng)學生靈活的思維能力和嚴謹?shù)膽B(tài)度。

例:一、(3)一個長方形長9厘米,寬比長少3厘米,它的周長是()(可能有的學生把寬看成3)。二、1.周長相等的兩個正方形,邊長也一定相等。()

例:二、5.由兩個相同的正方形拼成一個長方形,它的周長是兩個正方形周長之和。()

三、3.下面三個圖形,哪個圖形的周長最長?()

一、成績分析1、分析成績2、簡單介紹本次測試存在的主要問題:a、計算出錯b、公式不能靈活運用c、不理解題意(題意分析不透)

三、典型分析1、找出由學生自主不能解決的問題,也就是學生學習中的`難點,由師生共同再閱讀、再分析、再解答。2、示錯例,找錯因,引以為戒此題學生可能會因?qū)︻}意不理解而出現(xiàn)錯誤,本題中既考察了學生對長方形周長公式的掌握,也考察了對正方形公式的應用,更重要的是培養(yǎng)學生認真審題的好習慣。

四、對應練習1、師找出本次測試中失誤的集中點、重難點,編寫適量針對性的練習題。(課前完成)2、學生獨立完成。3、集體訂正。

高三數(shù)學專題課教案篇四

函數(shù)是中學數(shù)學的重要內(nèi)容,中學數(shù)學對函數(shù)的研究大致分成了三個階段。

三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學習的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學習過正、余弦函數(shù)的圖象、三角函數(shù)的有關(guān)概念和公式基礎上進行的,其知識和方法將為后續(xù)內(nèi)容的學習打下基礎,有承上啟下的作用。

本節(jié)課是數(shù)形結(jié)合思想方法的良好素材。數(shù)形結(jié)合是數(shù)學研究中的重要思想方法和解題方法。

本節(jié)通過對數(shù)形結(jié)合的進一步認識,可以改進學習方法,增強學習數(shù)學的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學的對稱之美、和諧之美。

因此,本節(jié)課在教材中的知識作用和思想地位是相當重要的。

(二)課時安排

4.8節(jié)教材安排為4課時,我計劃用5課時

(三)目標和重、難點

1.教學目標

教學目標的確定,考慮了以下幾點:

(2)本班學生對數(shù)學科特別是函數(shù)內(nèi)容的學習有畏難情緒,所以在內(nèi)容上要降低深難度。

(3)學會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應用主要放在后面的三節(jié)課進行。

由此,我確定了以下三個層面的教學目標:

(3)情感層面:通過運用數(shù)形結(jié)合思想方法,讓學生體會(數(shù)學)問題從抽象到形象的轉(zhuǎn)化過程,體會數(shù)學之美,從而激發(fā)學習數(shù)學的信心和興趣。

2.重、難點

由以上教學目標可知,本節(jié)重點是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會數(shù)形結(jié)合思想方法。

難點是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對稱性的理解。

為什么這樣確定呢?

因為周期概念是學生第一次接觸,理解上易錯;單調(diào)區(qū)間從圖上容易看出,但用一個區(qū)間形式表示出來,學生感到困難。

如何克服難點呢?

其一,抓住周期函數(shù)定義中的關(guān)鍵字眼,舉反例說明;

高三數(shù)學專題課教案篇五

理解數(shù)列的概念,掌握數(shù)列的運用

理解數(shù)列的'概念,掌握數(shù)列的運用

【知識點精講】

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))

2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示an=f(n)。

(通項公式不)

3、數(shù)列的表示:

(1)列舉法:如1,3,5,7,9……;

(2)圖解法:由(n,an)點構(gòu)成;

(3)解析法:用通項公式表示,如an=2n+1

5、任意數(shù)列{an}的前n項和的性質(zhì)

高三數(shù)學專題課教案篇六

本課文擬用一個教學時完成。如有可能,建議語、政、歷三科老師能集中一起備課,從各自學科的特點分析本課文,以講座的形式向同學們講授,亦可從文科綜合的角度,不光是從語文的角度,可以揉進哲學、歷史等學科知識,考查學生對本篇課文的理解。

教學目標

知識傳授目標:

1.初步了解孔孟思想觀點的異同點;

2.掌握本文中出現(xiàn)的詞和成語;

3.背誦孔孟的名言警句。

能力培養(yǎng)目標:

通過課文學習,培養(yǎng)學生從事物發(fā)生,問題產(chǎn)生的時代背景中去分析原因的能力。

情意目標:

為孔孟兩位偉大的哲人自豪,為祖國的悠久歷史和深厚文化積淀驕傲。

預習要求:

1.認真閱讀課文,搞懂課文中的注釋;

2.把課文中談及孔孟兩人不同思想觀點的語句畫出來。

教學過程

一、導入:

“大成至圣老師”大家都知道指的是孔子,在儒家學派中,地位僅次于他的就是孟子了,所以孟子被稱為“亞圣”。這兩位人物,常常是孔孟并舉,孔孟之道并提,被視為儒學的代表人物,孟子被認為完全繼承了孔子的學說和觀點。他們的學術(shù)觀點,生活理念被認為毫無二致。事實是這樣的嗎?請看課文—孔孟。引出板書課題。

二、簡介作者

(投影以下文字資料,并配以朗讀。也可不要配音朗讀。課堂教學時由教師或?qū)W生讀)

孔子:(前551—前479)春秋末期思想家、政治家、教育家。名丘,字仲尼。魯國陬邑(今山東曲阜東南)人。少“貪且賤”及長,做過“委吏”(會計)和“乘田”(管畜牧)等事。晚年致力于教育,整理《詩》、《書》等古代文獻?,F(xiàn)存《論語》一書,記有孔子的談話以及孔子與門人的問答。

孟子:(約前372—前289)戰(zhàn)國時思想家、政治家、教育家。名軻,字子輿。鄒(今山東鄒縣東南)人。受業(yè)于子思的門人。一度任齊宣王客卿,因主張不被采納,退而與弟子萬章等著書立說。他被認為是孔子學說的繼承人。

三、研習課文

1.讀第一自然段,思考:從哪里可以看出人們總認為孔孟是一體的?(形影相隨,孔稱“至圣”,孟稱“亞圣”,孔有《論語》,孟有《孟子》,孔主張“成仁”,孟主張“取義”—總之,從兩人“尊號”、著述、主張方面,都印證了這一點—形影相隨,孟隨孔,有孔則有孟。)(板書:形影相隨)

2.那么,真的是如影相隨,孔孟一體嗎?

(由此一問,導入第二、三、四自然段的閱讀)

1.請同學迅速閱讀這三個自然段,教師要分以下幾個方面—生活、人性、人際。學生按課文內(nèi)容找出答案。教師將答案以板書形式列出。

((1)相去兩百年,中國局勢,已起了很大變化;(2)此一時,彼一時)

2.孔子時代社會特點是什么?(雖有戰(zhàn)事,但不足以造成全社會的動蕩;禮的約束力雖不太大了,但仍有影響;孔子認為“克已復禮”可行)——板書:社會相對寧靜。

3.孟子時代社會特點是什么?(時代動亂,國君草菅民命,孟子認為,恢復過去是不可能了,要改弦更張)板書——社會十分動亂。

高三數(shù)學專題課教案篇七

§3.1.1數(shù)列、數(shù)列的通項公式目的:要求學生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項公式,給出一些數(shù)列能夠?qū)懗銎渫椆?,已知通項公式能夠求?shù)列的項。

重點:1數(shù)列的概念。按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做數(shù)列的項,數(shù)列的第n項an叫做數(shù)列的通項(或一般項)。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。

3.4.-1的正整數(shù)次冪:-1,1,-1,1,…

5.無窮多個數(shù)排成一列數(shù):1,1,1,1,…

二、提出課題:數(shù)列

1.數(shù)列的定義:按一定次序排列的一列數(shù)(數(shù)列的有序性)

2.名稱:項,序號,一般公式,表示法

3.通項公式:與之間的函數(shù)關(guān)系式如數(shù)列1:數(shù)列2:數(shù)列4:

4.分類:遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動數(shù)列;有窮數(shù)列、無窮數(shù)列。

5.實質(zhì):從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整數(shù)集n-(或它的有限子集{1,2,…,n})的函數(shù),當自變量從小到大依次取值時對應的一列函數(shù)值,通項公式即相應的函數(shù)解析式。

6.用圖象表示:—是一群孤立的點例一(p111例一略)

三、關(guān)于數(shù)列的通項公式1.不是每一個數(shù)列都能寫出其通項公式(如數(shù)列3)

2.數(shù)列的通項公式不唯一如:數(shù)列4可寫成和

3.已知通項公式可寫出數(shù)列的任一項,因此通項公式十分重要例二(p111例二)略

五、小結(jié):1.數(shù)列的有關(guān)概念2.觀察法求數(shù)列的通項公式

六、作業(yè):練習p112習題3.1(p114)1、2

2.寫出下面數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):(1)1、、、;(2)、、、;(3)、、、;(4)、、、。

3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個通項公式

6.在數(shù)列{an}中a1=2,a17=66,通項公式或序號n的一次函數(shù),求通項公式。

7.設函數(shù)(),數(shù)列{an}滿足(1)求數(shù)列{an}的通項公式;(2)判斷數(shù)列{an}的單調(diào)性。

7.(1)an=(2)

高三數(shù)學專題課教案篇八

一、教學目標:

掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質(zhì)及相關(guān)知識的綜合應用。

三、教學過程:

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結(jié):

1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應用問題,

2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。

高三數(shù)學專題課教案篇九

理解數(shù)列的概念,掌握數(shù)列的運用

教學重難點

理解數(shù)列的概念,掌握數(shù)列的運用

教學過程

【知識點精講】

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))

2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示an=f(n)。

(通項公式不)

3、數(shù)列的表示:

(1)列舉法:如1,3,5,7,9……;

(2)圖解法:由(n,an)點構(gòu)成;

(3)解析法:用通項公式表示,如an=2n+1

5、任意數(shù)列{an}的前n項和的性質(zhì)

高三數(shù)學專題課教案篇十

【教學目標】:

(1)知識目標:

通過實例,了解簡單的邏輯聯(lián)結(jié)詞“且”、“或”的含義;

(2)過程與方法目標:

(3)情感與能力目標:

在知識學習的基礎上,培養(yǎng)學生簡單推理的技能。

【教學重點】:

通過數(shù)學實例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學生能正確地表述相關(guān)數(shù)學內(nèi)容。

【教學難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。

【教學過程設計】:

教學環(huán)節(jié)教學活動設計意圖

情境引入問題:

下列三個命題間有什么關(guān)系?

(1)12能被3整除;

(2)12能被4整除;

知識建構(gòu)歸納總結(jié):

一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個新命題,

記作,讀作“p且q”。

引導學生通過通過一些數(shù)學實例分析,概括出一般特征。

1、引導學生閱讀教科書上的例1中每組命題p,q,讓學生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。學習使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。

2、引導學生閱讀教科書上的例2中每個命題,讓學生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。

歸納總結(jié):

當p,q都是真命題時,是真命題,當p,q兩個命題中有一個是假命題時,是假命題,

學習使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。

引導學生通過通過一些數(shù)學實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規(guī)律。

高三數(shù)學專題課教案篇十一

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養(yǎng)學生的學習愛好.

4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.

二、教法設計

觀察分析討論相結(jié)合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的判定方法.

2.教學難點:菱形判定方法的綜合應用.

四、課時安排

1課時

五、教具學具預備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

復習提問

1.敘述菱形的定義與性質(zhì).

2.菱形兩鄰角的比為1:2,較長對角線為 ,則對角線交點到一邊距離為________.

引入新課

師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學習這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個條件?

生答:兩個.

師問:哪兩個?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學生口述證實)

證實時讓學生注重線段垂直平分線在這里的應用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線 ,但都不是菱形.

菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):

注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4 已知: 的對角錢 的垂直平分線與邊 、 分別交于 、 ,如圖.

求證:四邊形 是菱形(按教材講解).

總結(jié)、擴展

1.小結(jié):

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.

2.思考題:已知:如圖4△ 中, , 平分 , , , 交 于 .

求證:四邊形 為菱形.

八、布置作業(yè)

教材p159中9、10、11、13(2)

九、板書設計

十、隨堂練習

教材p153中1、2、3

高三數(shù)學專題課教案篇十二

近年來的高考數(shù)學試題逐步做到科學化、規(guī)范化,堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新的原則??荚囶}不但堅持了考查全面,比例適當,布局合理的特點,也突出體現(xiàn)了變知識立意為能力立意這一舉措。更加注重考查考生進入高校學習所需的基本素養(yǎng),這些問題應引起我們在教學中的關(guān)注和重視。

20__年是湖南省新課標命題的第二年,數(shù)學試卷充分發(fā)揮數(shù)學作為基礎學科的作用,既重視考查中學數(shù)學基礎知識的掌握程度,又注意考查進入高校繼續(xù)學習的潛能。在前二年命題工作的基礎上做到了總體保持穩(wěn)定,深化能力立意,積極改革創(chuàng)新,兼顧了數(shù)學基礎、思想方法、思維、應用和潛能等多方面的考查,融入課程改革的理念,拓寬題材,選材多樣化,寬角度、多視點地考查數(shù)學素養(yǎng),多層次地考查思想能力,充分體現(xiàn)出湖南卷的特色:

1、試題題型平穩(wěn)突出對主干知識的考查重視對新增內(nèi)容的考查

2、充分考慮文、理科考生的思維水平與不同的學習要求,體現(xiàn)出良好的層次性

3、重視對數(shù)學思想方法的考查

4、深化能力立意,考查考生的學習潛能

5、重視基礎,以教材為本

6、重視應用題設計,考查考生數(shù)學應用意識

二、教學計劃與要求

新課已授完,高三將進入全面復習階段,全年復習分兩輪進行。

第一輪為系統(tǒng)復習(第一學期),此輪要求突出知識結(jié)構(gòu),扎實打好基礎知識,全面落實考點,要做到每個知識點,方法點,能力點無一遺漏。在此基礎上,注意各部分知識點在各自發(fā)展過程中的縱向聯(lián)系,以及各個部分之間的橫向聯(lián)系,理清脈絡,抓住知識主干,構(gòu)建知識網(wǎng)絡。在教學中重點抓好各中通性、通法以及常規(guī)方法的復習,是學生形成一些最基本的數(shù)學意識,掌握一些最基本的數(shù)學方法。同時有意識進行一定的綜合訓練,先小綜合再大綜合,逐步提高學生解題能力。

三、具體方法措施

1、認真學習《考試說明》,研究高考試題,提高復習課的效率。

《考試說明》是命題的依據(jù),復習的依據(jù)、高考試題是《考試說明》的具體體現(xiàn)。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認識《考試說明》上的差距。并力求在復習中縮小這一差距,更好地指導我們的復習。

2、高質(zhì)量備課,

參考網(wǎng)上的課件資料,結(jié)合我校學生實際,高度重視基礎知識,基本技能和基本方法的復習。充分發(fā)揮全組老師的集體智慧,確保每節(jié)課件都是高質(zhì)量的。統(tǒng)一的教案、統(tǒng)一的課件。

3、高效率的上好每節(jié)課,

重視通性、通法的落實。要把復習的重點放在教材中典型例題、習題上;放在體現(xiàn)通性、通法的例題、習題上;放在各部分知識網(wǎng)絡之間的內(nèi)在聯(lián)系上抓好課堂教學質(zhì)量,定出實施方法和評價方案。

4、狠抓作業(yè)批改、講評,教材作業(yè)、練習課內(nèi)完成,課外作業(yè)認真批改、講評。一題多思多解,提煉思想方法,提升學生解題能力。

5、認真落實月考,考前作好指導復習,試卷講評起到補缺長智的作用。

6、結(jié)合實際,了解學生,分類指導。

高考復習要結(jié)合高考的實際,也要結(jié)合學生的實際,要了解學生的全面情況,實行綜合指導??赡苡械膶W生應專攻薄弱環(huán)節(jié),而另一些學生則應揚長避短。了解學生要加強量的分析,建立檔案、了解學生,才有利于個別輔導,因材施教,對于好的學生,重在提高;對于差的學生,重在補缺。

四、復習參考資料

1、20__年數(shù)學科《考試說明》(全國)及湖南省《補充說明》。

2、《創(chuàng)新設計》高考第一輪總復習數(shù)學及《學海導航》高考第一輪總復習數(shù)學。

五、教學參考進度

第一輪的復習要以基礎知識、基本技能、基本方法為主,為高三數(shù)學會考做好準備。

高三數(shù)學專題課教案篇十三

(一)引入:

(1)情景1

2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現(xiàn)金,踏著可載重350千克的三輪車開始自己的發(fā)財大計,可明天應該收購多少大豆與紅薯呢?王老漢決定與家人合計.回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應收購大豆”,孫子說:“收購紅薯每元成本獲利多故應收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。

(2)問題與探究

師:同學們,你們能用具體的數(shù)字體現(xiàn)出王老漢的兩個孫子的收購方案嗎?

生,討論并很快給出答案.(師,記錄數(shù)據(jù))

師:請你們各自為王老漢設計一種收購方案.

生,獨立思考,并寫出自己的方案.(師,查看學生各人的設計方案并有針對性的請幾個同學說出自己的方案并記錄,注意:要特意選出2個不合理的方案)

師:這些同學的方案都是對的嗎?

生,討論并找出其中不合理的方案.

師:為什么這些方案就不行呢?

生,討論后并回答

師:滿足什么條件的方案才是合理的呢?

生,討論思考.(師,引導學生設出未知量,列出起約束作用的不等式組)

師,讓幾個學生上黑板列出不等式組,并對之分析指正

(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)

生,討論并回答(教師記錄幾組,并引導學生表示成有序?qū)崝?shù)對形式.)

生,討論并回答(教師對于學生的回答指正并有選擇性的記錄幾組比較簡單的數(shù)據(jù),對于這些數(shù)據(jù)要事先設計好并在課件的坐標系中標出備用)

(教師對引例中給出的不等式組介紹,并指出上面的正確的設計方案都是不等式組的解.進而介紹二元一次不等式(組)解與解集的概念)

生,討論并在下面作圖(師巡視檢查并對個別同學的錯誤進行指正)

師,利用多媒體課件展示平面直角坐標系及不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解所對應的一些點,讓學生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解在平面直角坐標系中的位置有什么特點?(由于點太少,我們的學生可能得不出結(jié)論)

生,提出猜想:直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計分得的左下半平面.

師:這個結(jié)論正確嗎?你能說出理由來嗎?

生,分組討論,并利用自己的數(shù)學知識去探究.(由于沒有給出一個固定的方向,所以各人用的方法不一,有的可能用特殊點再去檢驗,有的可能會試著用坐標軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計下方的點與對應直線上的點對照比較的方法進行說明)

師,在巡視的基礎上請運用不同方法的同學闡述自己的理由,并對于正確的作法給予表揚,然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計橫坐標相同而縱坐標不同的點對應分析的方法進行證明.

生:表示為二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計,(很快回答)

師:從中你能得出什么結(jié)論?

生,討論并得到一般性結(jié)論(教師總結(jié)糾正)

(教師總結(jié)并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的某側(cè)所有點組成的平面區(qū)域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示的平面區(qū)域因包含邊界故直線畫成實線.)

生,作圖分析,討論并回答(師,對學生的回答進行分析)

師:結(jié)合上面問題請同學們歸納出作不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計對應的平面區(qū)域的過程.

生,討論并回答(師,對于學生的答案給以分析,并肯定其中正確的結(jié)論)

生,討論并回答(教師總結(jié)并用多媒體展示:直線定界,特殊點定域)

生,討論,思考(教師巡視,并觀察學生的解答過程,最后引導學生得出:一個是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解,一個是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解)

生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計并求解.

師:若把上面問題改為點在同側(cè)呢?請同學們課后完成.

(二)實例展示:

例1、畫出不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示的平面區(qū)域.

例2、用平面區(qū)域表示不等式組二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解集.

(三)練習:

學生練習p86第1-3題.

【及時鞏固所學,進一步體會畫出不等式(組)表示的平面區(qū)域的基本流程】

(四)課后延伸:

(五)小結(jié)與作業(yè):

二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計某側(cè)所有點組成的平面區(qū)域,畫出不等式(組)表示的平面區(qū)域的基本流程:直線定界,特殊點定域(一般找原點)

作業(yè):第93頁a組習題1、2,

高三數(shù)學專題課教案篇十四

數(shù)學教學是數(shù)學活動的教學,是師生交往、互動、共同發(fā)展的過程。有效的數(shù)學教學應當從學生的生活經(jīng)驗和已有的知識水平出發(fā),向他們提供充分地從事數(shù)學活動的機會,在活動中激發(fā)學生的學習潛能,促使學生在自主探索與合作交流的過程中真正理解和掌握基本的數(shù)學知識、技能和思想方法。提高解決問題的能力,并進一步使學生在意志力、自信心、理性精神等情感、態(tài)度方面都得到良好的發(fā)展。

二.對教學內(nèi)容的認識

1.教材的地位和作用

本節(jié)課是在學生學習過“一百萬有多大”之后,繼續(xù)研究日常生活中所存在的較小的數(shù),進一步發(fā)展學生的數(shù)感,并在學完負整數(shù)指數(shù)冪的運算性質(zhì)的基礎上,嘗試用科學記數(shù)法來表示百萬分之一等較小的數(shù)。學生具備良好的數(shù)感,不僅對于其正確理解數(shù)據(jù)所要表達的信息具有重要意義,而且對于發(fā)展學生的統(tǒng)計觀念也具有重要的價值。

2.教材處理

基于設計理念,我在尊重教材的基礎上,適時添加了“銀河系的直徑”這一問題,以向?qū)W生滲透辯證的研究問題的思想方法,幫助學生正確認識百萬分之一。

通過本節(jié)課的教學,我力爭達到以下教學目標:

3.教學目標

(1)知識技能:

借助自身熟悉的事物,從不同角度來感受百萬分之一,發(fā)展學生的數(shù)感。能運用科學記數(shù)法來表示百萬分之一等較小的數(shù)。

(2)數(shù)學思考:

通過對較小的數(shù)的問題的學習,尋求科學的記數(shù)方法。

(3)解決問題:

能解決與科學記數(shù)有關(guān)的實際問題。

(4)情感、態(tài)度、價值觀:

使學生體會科學記數(shù)法的科學性和辯證的研究問題的思想方法。培養(yǎng)學生的合作交流意識與探究精神。

4.教學重點與難點

根據(jù)教學目標,我確定本節(jié)課的重點、難點如下:

重點:對較小數(shù)據(jù)的信息做合理的解釋和推斷,會用科學記數(shù)法來表示絕對值較小的數(shù)。

難點:感受較小的數(shù),發(fā)展數(shù)感。

三.教法、學法與教學手段

1.教法、學法:

本節(jié)課的教學對象是七年級的學生,這一年級的學生對于周圍世界和社會環(huán)境中的實際問題具有越來越強烈的興趣。他們對于日常生活中一些常見的數(shù)據(jù)都想嘗試著來加以分析和說明,但又缺乏必要的感知較大數(shù)據(jù)或較小數(shù)據(jù)的方法及感知這些數(shù)據(jù)的活動經(jīng)驗。

因此根據(jù)本節(jié)課的教學目標、教學內(nèi)容,及學生的認知特點,教學上以“問題情境——設疑誘導——引導發(fā)現(xiàn)——合作交流——形成結(jié)論和認識”為主線,采用“引導探究式”的教學方法。學生將主要采用“動手實踐——自主探索——合作交流”的學習方法,使學生在直觀情境的觀察和自主的實踐活動中獲取知識,并通過合作交流來深化對知識的理解和認識。

2.教學手段:

1.采用現(xiàn)代化的教學手段——多媒體教學,能直觀、生動地反映問題情境,充分調(diào)動學生學習的積極性。

2.以常見的生活物品為直觀教具,豐富了學生感知認識對象的途徑,使學生對百萬分之一的認識更貼近生活。

四.教學過程

(一).復習舊知,鋪墊新知

問題1:光的速度為300000km/s

問題2:地球的半徑約為6400km

問題3:中國的人口約為1300000000人

(十).教學設計說明

本節(jié)課我以貼近學生生活的數(shù)據(jù)及問題背景為依托,使學生學會用數(shù)學的方法來認識百萬分之一,豐富了學生對數(shù)學的認識,提高了學生應用數(shù)學的能力,并為培養(yǎng)學生的終身學習奠定了基礎。在授課時相信會有一些預見不到的情況,我將在課堂上根據(jù)學生的實際情況做相應的處理。

高三數(shù)學專題課教案篇十五

一、過程目標

1通過師生之間、學生與學生之間的互相交流,培養(yǎng)學生的數(shù)學交流能力和與人合作的精神。

2通過對對數(shù)函數(shù)的學習,樹立相互聯(lián)系、相互轉(zhuǎn)化的觀點,滲透數(shù)形結(jié)合的數(shù)學思想。

3通過對對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學生觀察、分析、歸納的思維能力。

二、識技能目標

1理解對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖象,感受研究對數(shù)函數(shù)的意義。

2掌握對數(shù)函數(shù)的性質(zhì),并能初步應用對數(shù)的性質(zhì)解決簡單問題。

三、情感目標

1通過學習對數(shù)函數(shù)的概念、圖象和性質(zhì),使學生體會知識之間的有機聯(lián)系,激發(fā)學生的學習興趣。

2在教學過程中,通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學交流能力,增強學習的積極性,同時培養(yǎng)學生傾聽、接受別人意見的優(yōu)良品質(zhì)。

教學重點難點:

1對數(shù)函數(shù)的定義、圖象和性質(zhì)。

2對數(shù)函數(shù)性質(zhì)的初步應用。

教學工具:多媒體

【學前準備】對照指數(shù)函數(shù)試研究對數(shù)函數(shù)的定義、圖象和性質(zhì)。

高三數(shù)學專題課教案篇十六

(二)評價說明

1.針對本班學生情況對課本進行了適當改編、細化,有利于難點克服和學生主體性的調(diào)動。

2.根據(jù)課堂上師生的雙邊活動,作出適時調(diào)整、補充(反饋評價);根據(jù)學生課后作業(yè)、提問等情況,反復修改并指導下節(jié)課的設計(反復評價)。

3.本節(jié)課充分體現(xiàn)了面向全體學生、以問題解決為中心、注重知識的建構(gòu)過程與方法、重視學生思想與情感的'設計理念,積極地探索和實踐我校的科研課題——努力推進課堂教學結(jié)構(gòu)改革。

通過這樣的探索過程,相信學生能從中有所體會,對后續(xù)內(nèi)容的學習和學生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學生記憶中的不是知識本身,而是方法與思想,是學習的習慣和熱情,這正是我們教育工作者追求的結(jié)果。

高三數(shù)學專題課教案篇十七

1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導性、啟發(fā)性、創(chuàng)造性的原則;(原則性)

2.使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。(靈活性)

高三數(shù)學專題課教案篇十八

教學目標:

1、知識與技能:

1)了解導數(shù)概念的實際背景;

2)理解導數(shù)的概念、掌握簡單函數(shù)導數(shù)符號表示和基本導數(shù)求解方法;

3)理解導數(shù)的幾何意義;

4)能進行簡單的導數(shù)四則運算。

2、過程與方法:

先理解導數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程及運算,培養(yǎng)解決問題的能力。

3、情態(tài)及價值觀;

讓學生感受數(shù)學與生活之間的聯(lián)系,體會數(shù)學的美,激發(fā)學生學習興趣與主動性。

教學重點:

1、導數(shù)的求解方法和過程;

2、導數(shù)公式及運算法則的熟練運用。

教學難點:

1、導數(shù)概念及其幾何意義的理解;

2、數(shù)形結(jié)合思想的靈活運用。

教學課型:復習課(高三一輪)

教學課時:約1課時

高三數(shù)學專題課教案篇十九

(一)導入

引出數(shù)形結(jié)合思想方法,強調(diào)其含義和重要性,告訴學生,本節(jié)課將利用數(shù)形結(jié)合方法來研究,會使學習變得輕松有趣。

采用這樣的引入方法,目的是打消學生對函數(shù)學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。

(二)新知探索主要環(huán)節(jié),分為兩個部分

教學過程如下:

第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)

1.定義域、值域2.周期性

3.單調(diào)性(重難點內(nèi)容)

為了突出重點、克服難點,采用以下手段和方法:

(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結(jié)合的重要作用;

(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調(diào)動起來。

(3)單調(diào)區(qū)間的探索過程是:

先在靠近原點的一個單調(diào)周期內(nèi)找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認識過程。

**教師結(jié)合圖象幫助學生理解并強調(diào)“距離”(“長度”)是周期的多少倍

為什么要這樣強調(diào)呢?

因為這是對知識的一種意義建構(gòu),有助于以后理解記憶正弦型函數(shù)的相關(guān)性質(zhì)。

4.對稱性

設計意圖:

(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。

(2)從正弦函數(shù)的對稱性看到了數(shù)學的對稱之美、和諧之美,體現(xiàn)了數(shù)學的審美功能。

5.最值點和零值點

有了對稱性的理解,容易得出此性質(zhì)。

第二部分————學習任務轉(zhuǎn)移給學生

設計意圖:

(3)通過課堂教學結(jié)構(gòu)的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構(gòu)主義的教學原則。

(三)鞏固練習

補充和選作題體現(xiàn)了課堂要求的差異性。

(四)結(jié)課

【本文地址:http://www.aiweibaby.com/zuowen/5414015.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔